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a b s t r a c t

As is well known, the parameter spaces of hierarchical systems such as multilayer perceptrons include
singularities and the plateau phenomenon is ubiquitous in the process of learning. In the singular
regions, the Fisher information matrix degenerates and the loss function is almost unchanged when the
parameters arrive in the singular regions, which is called the plateau phenomenon. We wonder about
whether the singularities and the plateau phenomenon exist in the parameter identification process of
the linear and the ordinary nonlinear systems. In this paper, we can see that in some of the parameter
identification of the nonlinear systems, the Fisher information matrix degenerates, the singularities exist
and we can see the plateau phenomenon in the learning curves. A simulation example is provided to
demonstrate the theoretical analysis in Section 3.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Parameter identification is a very active field of research in
applied science, with a fast growing bibliography. During past
decades, a wide variety of effective techniques have been intro-
duced for the parameter identification, such as gradient decent
method and least squares method [1–3].

Systems, either linear systems or nonlinear systems, receive
input signals and transform them into output signals. Learning
takes place by modifying the parameters of the system. The
process of parameter identification is always called a process of
learning. Learning is to imitate the stochastic behavior of the true
model by modifying the parameters of the systems. Since systems
are specified by a set of these parameters, we may regard the
whole set of systems as a high-dimensional space or manifold
whose coordinate system is given by these modifiable parameters.
In the practical engineer, the behavior of a system is disturbed by a
noise, so the system that receives input signal x emits output y
stochastically. This stochastic behavior is determined by the
parameters. Let us also assume that a pair ðx; yÞ of input x and
corresponding answer y is given from the outside by a teacher. A
number of examples are generated by an unknown probability
distribution p0ðx; yÞ of the teacher. Let us denote the set of
examples as ðx1; y1Þ; ðx2; y2Þ;…; ðxN ; yNÞ. A system learns from the
examples to imitate the stochastic behavior of the teacher best.

The behavior of a learning model with noise is described by a
conditional probability distribution, which is the probability of
output given the input, so that it can be regarded as a statistical

model including a number of unknown parameters. Learning, is a
kind of estimation where the parameters are modified sequentially
by using examples one by one. The parameters change by learning,
forming a trajectory in the manifold, and therefore we need
to study the geometrical features to elucidate the behavior of
learning.

However, in the neuromanifolds of neural networks, such as
multilayer perceptrons, RBF networks, singular points always
exist, where the Fisher information matrix degenerates. The
identifiability of parameters is lost in such singular positions.
It has been shown that once the parameters are attracted to
singular points, the parameters are very slow to move away from
them. This is a new area of research attracting much attention.
Hagiwara et al. noticed this problem first [4], they used AIC to
determine the size of perceptrons and found that did not work
well. They found that this was because of the singular structure of
the hierarchical models and investigated ways to overcome this
difficulty. To accelerate the dynamics of learning, Amari proposed
the natural or Riemannian gradient method of learning [5], which
took into account the geometrical structure of the neuromanifold.
Work done regarding this aspect includes that of Fukumizu and
Amari [6], as well as the statistical–mechanical approaches taken
by Saad and Solla [7], Rattray et al. [8], Rattray and Saad [9], Wei
and Amari [10,11], Le Roux et al. [12], Amari [13], Pascanu and
Bengio [14].

Recently, Watanabe [15] defines a widely applicable Bayesian
information criterion (WBIC) by the average log likelihood func-
tion over the posterior distribution with the inverse temperature
1/log n. This gives us a method to establish the order of the
regression models. What we wonder is that: in the identification
of the linear and the ordinary nonlinear systems, except for neural
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networks, it is useful to know whether the singularities exist. If
exist, how they affect the dynamics of learning. Akaike [16–18],
Hamparsum [19] and Amari et al. [20] all noticed the problem, but
they did not give a detail explanation for this problem. In the
present paper we intend to give an overview concerning with the
above problem. We will give the singular regions of the nonlinear
systems and analyzes the dynamics of them and this is the first
time for which the singular regions are given for ordinary non-
linear systems.

The rest of the paper is organized as follows. In Section 2, we
describe the learning paradigm. Section 3, we will discuss the
singularities of the linear and the ordinary nonlinear systems.
In Section 4, we give two numerical examples to demonstrate the
theoretical analysis in Section 3. Section 5 is the conclusions and
discussions of the paper.

2. Learning paradigm and the Fisher information matrix

2.1. Learning paradigm and gradient learning method

In fact, in the identification problems of the system models, it is
required to imitate the functions specified by the teacher

y¼ f 0ðx;θÞ: ð1Þ
where θ¼ ðθ1;θ2;…;θnÞT is an n-dimensional column vector.

Instead of the analytical form of f 0ðxÞ, the input–outputs
ðx1; y1Þ, ðx2, y2Þ;…; ðxN ; yNÞ are given, where yi; i¼ 1;2;…;N, are
the noisy versions of the true outputs,

yi ¼ f 0ðxi;θÞþϵi; i¼ 1;2;…;N; ð2Þ
and ϵi, i¼ 1;2;…;N, denote the additive noises. The model para-
meter θ is adjusted to fit the training examples. The distribution of
training input is assumed to be uncorrelated with the noises ϵi,
i¼1, 2, …, N, where the latter are subject to zero mean Gaussian
distributions. Generally, when the student model is f ðx;θÞ, which
is different from f 0ðx;θÞ, we define the instantaneous loss function
as follows:

lðy; x;θÞ ¼ 1
2 ðy� f ðx;θÞÞ2: ð3Þ

Here, we will adopt the batch mode learning, where all data in the
training set are summarized, and we use the gradient descent
algorithm to modify the parameters

θtþ1 ¼ θt�η
1
N

∑
N

i ¼ 1

lðyi; xi;θtÞ
∂θt

; ð4Þ

where N is the number of examples in the training set. When the
number N is large, (4) is equivalent as follows:

θtþ1 ¼ θt�η
lðy;x;θtÞ

∂θt

� �
: ð5Þ

where 〈 � 〉 denote the expectation over ðx; yÞ.

2.2. The Fisher information matrix

The Fisher information matrix is defined by

GðθÞ ¼ Ex � qðxÞ Eyjx;θ
∂lðy; x;θÞ

∂θ
∂lðy; x;θÞ

∂θ

T
" #" #

; ð6Þ

where lðy; x;θÞ ¼ log pðx; y;θÞ is a fundamental quantity in statis-
tics. It is positive definite in a regular statistical model, and plays
the role of the Riemannian metric of the parameter space, as is
shown by the information geometry [21].

The Fisher information gives the average amount of informa-
tion included in one pair ðy;xÞ of data which is used to estimate
the parameter θ.

Cramër–Rao theorem. Let bθ be an unbiased estimator from n
examples in a regular statistical model, then the error covariance ofbθ satisfies

E½ðθ�bθÞðθ�bθÞT �Z1
n
G�1ðθÞ: ð7Þ

However, in the singular regions, the Fisher information matrix
(7) degenerates, and its inverse G�1 does not exist. The Cramër–
Rao theorem is no longer valid at the singular regions. This makes
it difficult to analyze the performance of estimation and learning
when the true distribution is in the singular region or in the
neighborhood.

3. Dynamical systems and their singularities

In parametric system models, the input–output description is
expressed by a mathematical function determined by a finite
number of parameters. In order to analyze the singularity appear-
ing in the identification process, we consider two distinct classes
of systems models: linear system models and nonlinear system
models. All the cases can be represented in terms of the state
vector of past outputs and present and past inputs

yt ¼ f ðyt�1; yt�2;…; yt�m;ut ;…;ut�n;θÞ; ð8Þ
where the time lags m and n are assumed to be fixed.

3.1. Linear system models and their singularities

As the section title suggests, this class of models includes all the
parametric descriptions of linear systems whose outputs are
linearly related to the parameters. Generally, these are linear
series expansions of this form

yk ¼ ∑
m

i ¼ 1
aiyk� iþ ∑

n

j ¼ 0
ajuk� jþϵk; ð9Þ

where ϵk �Nð0;s2Þ. Suppose that the input set u1;u2;…;uN and
the corresponding output set y1; y2;…; yN are known, and we
assume

ZN ¼HNθþE; ð10Þ
where

YN ¼ ½y1; y2;…; yN �T ; ð11Þ

E¼ ½ϵ1; ϵ2;…; ϵN�T ; ð12Þ

θ¼ ½a1;…; am; b1;…; bn�T ; ð13Þ
and

HN ¼

�y0 ⋯ �y1�m u0 ⋯ u1�n

�y1 ⋯ �y2�m u1 ⋯ u2�n

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
�yN ⋯ �yN�m uN ⋯ uN�n

266664
377775; ð14Þ

so we have

ZN �NðHNθ;s2IÞ; ð15Þ
and the probability density function (pdf) of Zn in the condition of
θ can be obtained as the following:

f ðZNjθÞ ¼ ð2πÞ�N=2ðs2Þ�N=2 expð�1
2 ðZN�HNθÞT ðZN�HNθÞÞ: ð16Þ

We adopt the negative log-likelihood as a loss function, i.e.

lðZNjθÞ ¼ � log f ðZN jθÞ
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