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a b s t r a c t

This paper is concerned with the problem of stability analysis of recurrent neural networks with time-
varying delay belonging to a given interval. By constructing a novel augmented Lyapunov functional
which contains some triple-integral terms, improved delay-dependent stability criteria are derived in
terms of linear matrix inequality (LMI) by introducing some free-weighting matrices and using integral
inequality technique and convex combination method. Numerical examples are given to illustrate the
effectiveness of the proposed method.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

During past several decades, recurrent neural networks have
received much attention due to their widely applications in
pattern recognition, signal processing, image processing, optimi-
zation problem and model identification [1,2]. It is well known
that time-delay is usually one of the sources of instability and
oscillations of control systems such as networked control systems
[3]. Rich results for systems with time-delay have been obtained
[4–6]. With the rapid development of microelectronic technology,
neural networks can be implemented by very large scale inte-
grated circuits. However, as the speed of the information proces-
sing is not unlimited, there inevitably exist time-delays in neural
networks. Therefore, the problem of stability of recurrent neural
networks with delays has been an active research area. Due to its
importance in theory and engineering, many results on this topic
have been reported in the literature [7–17].

Existing stability results for recurrent neural networks
with time-varying delays can be classified into two types. One is
delay-independent and the other is delay-dependent. Because
delay-dependent stability conditions are usually less conservative,

they have received much attention. For example, the problem
of global exponential stability for a class of delayed recurrent
neural networks was studied in [18]. On the basis of a new
Lyapunov–Krasovskii functional and Jensen's inequality, some
improved delay-dependent stability criteria were developed.
Using delay partitioning technique, delay-dependent stability
criteria were proposed to guarantee the asymptotic stability for
static recurrent neural networks [19]. Using some new algorithms,
delay-independent and delay-dependent stability conditions for
static recurrent neural networks were proposed in [20]. By
constructing a new augmented Lyapunov–Krasovskii functional,
delay-independent and delay-dependent stability criteria were
obtained in [21] using the well-known free-weighting matrices
method. As for other results of stability for recurrent neural
networks refer to [22,23] and references therein.

In this paper, a new augmented Lyapunov–Krasovskii func-
tional is proposed to derive less conservative stability conditions.
This Lyapunov–Krasovskii functional contains some triple integral
terms similar to [24–26]. Combing free-weighting matrices
method [27,28] and Jensen's inequity [29] with convex combina-
tion technique [30], some less conservative stability conditions are
obtained. Numerical examples are given to show the effectiveness
of the proposed method.

Notations: Throughout this paper, the superscripts ‘�1’ and
‘T’ stand for the inverse and transpose of a matrix, respectively; Rn

denotes an n-dimensional Euclidean space; Rm�n is the set of all
m� n real matrices; P40 means that matrix P is symmetric
positive definite; I is an appropriately dimensional identity matrix.
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2. Problem formulation

Consider the following delayed recurrent neural network:

_uðtÞ ¼�AuðtÞ þ gðWuðt�τðtÞÞ þ JÞ ð1Þ
where uð�Þ ¼ ½u1ð�Þ u2ð�Þ ⋯ unð�Þ�T is the neuron state vector, gðWu
ð�ÞÞ ¼ ½g1ðW1uð�ÞÞ g2ðW2uð�ÞÞ ⋯ gnðWnuð�ÞÞ�T is the neuron activa-
tion function. A¼ diagfa1; a2;…; ang with ai40, i¼ 1;2;…; n, is a
diagonal matrix representing self-feedback term. W ¼
½WT

1 WT
2 … WT

n�T is the delayed connection weight matrix.
J ¼ ½j1; j2;…; jn�T is a constant input. τðtÞ is a time-varying differ-
entiable function and satisfies

h1 ≤τðtÞ≤h2 ð2Þ
and

_τðtÞ≤μ ð3Þ
where h24h140 and μ are constants.

It is assumed that each neuron activation function, gið�Þ,
i¼ 1;2;…;n is nondecreasing, bounded and satisfies

0≤
giðs1Þ�giðs2Þ

s1�s2
≤li ∀s1; s2∈R; s1≠s2; i¼ 1;2;…;n ð4Þ

where li, i¼ 1;2;…;n are known real constants.
The above assumption guarantees that there exists an equili-

brium point of system (1). Denote un ¼ ½un

1 un

2 ⋯ un
n� is the equili-

brium point. Using the transformation xð�Þ ¼ uð�Þ�un, system (1)
can be converted to the following error system:

_xðtÞ ¼ �AxðtÞ þ f ðWxðt�τðtÞÞÞ ð5Þ
where xð�Þ ¼ ½x1ð�Þ x2ð�Þ ⋯ xnð�Þ�T is the state vector, f ðWxð�ÞÞ ¼
½f 1ðW1xð�ÞÞ f 2ðW2xð�ÞÞ ⋯ f nðWnxð�ÞÞ�T with f ðWxð�ÞÞ ¼ gðWxð�Þþ
un þ JÞ�gðWun þ JÞ. It is easy to see that f ið�Þ, i¼ 1;2;…;n, satisfies

0≤
f iðs1Þ�f iðs2Þ

s1�s2
≤li; f i 0ð Þ ¼ 0 ∀s1; s2∈R; s1≠s2; i¼ 1;2;…;n ð6Þ

Before moving on, the following lemma is introduced which
has an important role in the derivation of the main results.

Lemma 1 (Sun et al. [24], Gu [29]). For any constant matrix Z40
and scalars τ24τ140 such that the following integrations are well
defined, then

ð1Þ�
Z t�h1

t�h2
xT sð ÞZx sð Þ ds≤� 1

h12

Z t�h1

t�h2
xT sð Þ ds Z

Z t�h1

t�h2
x sð Þ ds

ð2Þ�
Z �h1

�h2

Z t

tþθ
xT sð ÞZx sð Þ ds dθ

≤� 2

h22�h2
1

Z �h1

�h2

Z t

tþθ
xT sð Þ ds dθ Z

Z �h1

�h2

Z t

tþθ
x sð Þ ds dθ

where h12 ¼ h2�h1.

3. Main results

In this section, less conservative delay-dependent stability
criteria are obtained based on a novel augmented Lyapunov–
Krasovskii functional.

Theorem 1. For given scalars 0oh1oh2 and μ, system (5) is
asymptotically stable for any time-varying delay satisfying (2)
and (3) if there exist matrices P ¼ ½Pij�4�440, Q ¼ ½Qij�3�3≥0, Z ¼
½Zij�3�3≥0, R¼ ½Rij�3�3≥0, M ¼ ½Mij�2�2≥0, N¼ ½Nij�2�2≥0,
non-negative diagonal matrices K, T and S and any matrices
H¼ ½HT

1 HT
2 … HT

6�T , F ¼ ½FT1 FT2 … FT6�T , with appropriate dimensions

such that the following LMIs hold:

Ξ Θ AT
c Y h12Ĥ

n Ω 0 0
n n �Y 0
n n n �h12N

2
66664

3
77775o0 ð7Þ

Ξ Θ AT
c Y h12F̂

n Ω 0 0
n n �Y 0
n n n �h12N

2
66664

3
77775o0 ð8Þ

where

Ξ ¼ ½Ξij�6�6

Ξ11 ¼�P11A�ATP11�Q12A�ATQT
12�Z12A�ATZT

12

�h1M12A�h1A
TMT

12�h12N12A�h12A
TNT

12

þP14 þ PT
14 þ Q11 þ Z11 þ h1M11 þ h12N11

� 1
h1

M22�2X1�
2h12

h1 þ h2
X2

Ξ12 ¼�H1 þ F1

Ξ13 ¼�ATP12 þ PT
24 þ

1
h1

M22 þ H1

Ξ14 ¼�ATP13 þ PT
34�P14�F1

Ξ15 ¼�ATQ23�ATZ23 þ Q13 þ Z13 þWTLTKT�ATWTST

Ξ16 ¼ P11 þ Q12 þ Z12 þ h1M12 þ h12N12

Ξ22 ¼� 1�μð ÞQ11�H2�HT
2 þ F2 þ FT2

Ξ23 ¼H2�HT
3 þ FT3

Ξ24 ¼�PT
45�HT

4�F2 þ FT4
Ξ25 ¼�HT

5 þ FT5
Ξ26 ¼�HT

6 þ FT6� 1�μð ÞQ13 þWTLTTT

Ξ33 ¼�Z11 þ R11�
1
h1

M22 þ H3 þ HT
3

Ξ34 ¼�P24�F3 þ HT
4

Ξ35 ¼HT
5

Ξ36 ¼ PT
12 þ HT

6

Ξ44 ¼�P34�PT
34�R11�F4�FT4

Ξ45 ¼�FT5
Ξ46 ¼ PT

13�FT6
Ξ55 ¼Q33 þ Z33�2K

Ξ56 ¼QT
23 þ ZT

23 þ SW
Ξ66 ¼� 1�μð ÞQ33�2T

Θ¼

0 0 P12 P13 0 Θ16 Θ17

0 0 0 0 �ð1�μÞQ12 0 0
�Z13 þ R13 0 Θ33 P23 0 1

h1
MT

12 0

0 �R13 PT
23 P33�R12 0 �P44 �P44

0 0 0 0 0 0 0
0 0 0 0 �ð1�μÞQT

23 P14 P14

2
6666666664

3
7777777775

Θ16 ¼�ATP14 þ P44�
1
h1

MT
12 þ

2
h1

X1

Θ17 ¼�ATP14 þ P44 þ
2

h2 þ h1
X2

Θ33 ¼ P22�Z12 þ R12

Ω¼

�Z33 þ R33 0 �ZT
23 þ RT

23 0 0 0 0

n �R33 0 �RT
23 0 0 0

n n �Z22 þ R22 0 0 P24 P24

n n n �R22 0 P34 P34

n n n n �ð1�μÞQ22 0 0
n n n n n Ω66 0
n n n n n n � 2

h22�h21
X2

2
66666666666664

3
77777777777775
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