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a b s t r a c t

We present an extension of the recently introduced Generalized Matrix Learning Vector Quantization
algorithm. In the original scheme, adaptive square matrices of relevance factors parameterize a
discriminative distance measure. We extend the scheme to matrices of limited rank corresponding to
low-dimensional representations of the data. This allows to incorporate prior knowledge of the intrinsic
dimension and to reduce the number of adaptive parameters efficiently.

In particular, for very large dimensional data, the limitation of the rank can reduce computation
time and memory requirements significantly. Furthermore, two- or three-dimensional representations
constitute an efficient visualizationmethod for labeled data sets. The identification of a suitable projection
is not treated as a pre-processing step but as an integral part of the supervised training. Several real world
data sets serve as an illustration and demonstrate the usefulness of the suggested method.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Learning Vector Quantization (LVQ) (Kohonen, 2001) and
its variants constitute a popular family of supervised, prototype-
based classifiers. These algorithms have been employed
successfully in a variety of scientific and commercial appli-
cations, including image analysis, bioinformatics, robotics, etc.
(Biehl, Ghosh, & Hammer, 2007; Bojer, Hammer, Schunk, & von
Toschanowitz, 2001; Bunte, Biehl, Petkov, & Jonkman, 2009; Bunte,
Hammer, Schneider, & Biehl, 2009; Bunte, Hammer, Wismüller,
& Biehl, 2010a; Hammer, Strickert, & Villmann, 2005a; Hammer
& Villmann, 2002; Schneider, Biehl, & Hammer, 2009; Villmann,
Merenyi, & Hammer, 2003). The method is easy to implement and
its complexity is controlled by the user in a straightforward way.
LVQ can be applied to multi-class problems without further com-
plication and the resulting classifiers can be interpreted intuitively.
This is due to the fact that the classification of data points is based
on distances to typical representatives, i.e. prototypes, which are
identified in feature space.

Numerous modifications of Kohonen’s original, heuristic for-
mulation of LVQ have been suggested in the literature, aiming
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at better convergence properties and generalization behavior. For
instance, Sato and Yamada (1996) propose an algorithm, termed
Generalized Learning Vector Quantization (GLVQ), which updates
prototypes by means of gradient descent with respect to a heuris-
tically motivated cost function. Recently, also kernelized versions
have been proposed (Schleif, Villmann, Hammer, Schneider, &
Biehl, 2010). A key issue in all LVQ algorithms, with or without
an underlying cost function, is the choice of an appropriate simi-
larity or distance measure. Most frequently, standard Euclidean or
Minkowski metrics are employed, which are not necessarily ap-
propriate for the given problem and data set. The fact that features
can have very different meaning and magnitude in heterogeneous
data, is accounted for in so-called relevance learning schemes (Bo-
jer et al., 2001; Hammer, Strickert, & Villmann, 2005b; Hammer
& Villmann, 2002) which employ adaptive scaling factors for each
dimension in feature space.

An important extension of this concept has been introduced in
Schneider et al. (2009): in the so-called Generalized Matrix LVQ
(GMLVQ) a full matrix of relevances is used, which can account
for correlations between different features. An adaptive self-affine
transformationΩ of feature space identifies the coordinate system
which is most suitable for the given classification task. The original
formulation of GMLVQ employs symmetric squared matrices. In
the simplest case, one matrix is taken to define a global distance
measure. Extensions to class-wise or local matrices, attached to

0893-6080/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2011.10.001

http://dx.doi.org/10.1016/j.neunet.2011.10.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:k.bunte@rug.nl
http://www.cs.rug.nl/~kbunte/
http://www.cs.rug.nl/~kbunte/
http://www.cs.rug.nl/~kbunte/
http://www.cs.rug.nl/~kbunte/
http://www.cs.rug.nl/~kbunte/
http://www.cs.rug.nl/~kbunte/
http://dx.doi.org/10.1016/j.neunet.2011.10.001


160 K. Bunte et al. / Neural Networks 26 (2012) 159–173

individual prototypes, are technically straightforward and allow
for the parameterization of more complex decision boundaries.

Here we present and discuss an important modification: the
use of rectangular transformation matrices Ω . The corresponding
relevance matrices are of bounded rank or, in other words,
distances are evaluated in a space with reduced dimension. The
motivation for considering this variation of GMLVQ is at least
twofold: (a) prior knowledge about the intrinsic dimension of the
data can be incorporated efficiently and (b) the number of free
parameters in the learning problem may be reduced significantly.

Although unrestricted GMLVQ displays a tendency to reduce
the rank of the relevance matrices in the training process, the
advantages of restricting the rank explicitly are obvious. In
particular for nominally very high-dimensional data, e.g. in image
analysis or bioinformatics, unrestricted relevancematrices become
intractable. In addition, optimization results can be poor when
the search is performed in an unnecessarily large parameter
space. Furthermore, the exact control of the rank allows for
pre-defining the dimension of the intrinsic representation and
is, for instance, suitable for the discriminative visualization of
labeled data sets. In contrast with many other schemes that
consider dimension reduction as a pre-processing step, ourmethod
performs the training of prototypes and the identification of a
suitable transformation simultaneously. Hence, both sub-tasks
are guided by the ultimate goal of implementing the desired
classification scheme.

Appropriate projections into two- or three-dimensional spaces
can furthermore be used for efficient visualization of labeled data.
Visualization enables to use the astonishing cognitive capabilities
of humans for visual perceptionwhen extracting information from
large data volumes. Structural characteristics can be captured
almost instantly by humans, independent of the number of
displayed points. Classical unsupervised dimension reduction
techniques represent data points contained in a high dimensional
data manifold by low dimensional counterparts in, for instance,
two or three dimensions, while preserving as much information
as possible. Since it is not clear in advance which parts of the
data are relevant to the user, this problem is inherently ill-posed:
depending on the specific data domain and the situation at hand,
different aspects can be in the focus of attention. Prior knowledge,
in the form of label information, can be used to formulate a well-
defined objective in terms of the classification performance.

There exist a few classical dimensionality reducing visualiza-
tion tools which take class labels into account: Classical Fisher
linear discriminant analysis (LDA), the recently introduced local
Fisher discriminant analysis (LFDA) (Sugiyama & Roweis, 2007),
Neighborhood Component Analysis (NCA) (Goldberger, Roweis,
Hinton, & Salakhutdinov, 2004), as well as partial least squares
regression (PLS) offer supervised linear visualization techniques.
Kernel techniques extend these settings to nonlinear projections
(Baudat & Anouar, 2000; Ma, Qu, &Wong, 2007). Adaptive dissim-
ilarity measures which modify the metric used for projection ac-
cording to the given auxiliary information have been introduced
in Kaski, Sinkkonen, J, and Peltonen (2001), Peltonen, Klami, and
Kaski (2004), and Bunte et al. (2010a). The resulting metric can
be integrated into various techniques such as SOM, MDS, or a re-
cent information theoreticmodel for data visualization (Kaski et al.,
2001; Peltonen et al., 2004; Venna, Peltonen, Nybo, Aidos, & Kaski,
2010). An ad hocmetric adaptation is used in Geng, Zhan, and Zhou
(2005) to extend Isomap (Tenenbaum, Silva, & Langford, 2000) to
class labels. Alternative approaches change the cost function of
dimensionality reduction, for instance by using conditional proba-
bilities, class-wise similarity matrices or introducing a covariance-
based coloringmatrix for the side information as proposed in Iwata
et al. (2007), Memisevic and Hinton (2005), and Song, Smola, Borg-
wardt, and Gretton (2008).

Before we describe our method more formally in Section 3
we review GMLVQ in the following section. In Section 4, we
apply the novel LiRaM LVQ to a benchmark problem and study
the influence of the dimension reduction on the classification
performance. We also compare the limited rank version to the
naive approach of taking the first components of the full rank
GMLVQ. We show that reducing the rank after training not only
requires more memory and CPU time, but also yields inferior
classification performance compared to LiRaMLVQ. In Section 5we
present example applications of our algorithm in the visualization
of labeled data. We also compare with visualizations obtained by
LFDA and NCA. We conclude by summarizing our findings and
providing an outlook on perspective investigations.

2. Review of Generalized Matrix LVQ

In this section we briefly review the Generalized Matrix LVQ
algorithm (Schneider et al., 2009). We will assume that training
is based on n examples of the form (xi, yi) ∈ RN

× {1, . . . , C},
where N is the dimension of feature vectors and C is the number
of classes. Learning Vector Quantization (LVQ) parameterizes the
classification by means of at least C prototypes, which are chosen
as typical representatives of the respective classes. They are
characterized by their location in feature space wi ∈ RN and
the respective class label c(wi) ∈ {1, . . . , C}. Given a distance
measure dΛ(w, x) in RN parameterized by Λ, the classification
is done according to a ‘‘winner takes all’’ or ‘‘nearest prototype’’
scheme: Any data point x ∈ RN is assigned to the class label c(wi)
of the closest prototype i with dΛ(wi, x) ≤ dΛ(wj, x) for all j ≠ i.

Frequently, learning corresponds to an iterative procedure
which presents a single example at a time and which moves
prototypes closer to (away from) data points representing the
same (a different) class. In Sato and Yamada (1996) a very flexible
approach is introduced, in which the training algorithm is guided
by the minimization of a cost function

f =


i

Φ(µ) =


i

Φ


dΛ
J − dΛ

K

dΛ
J + dΛ
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where the quantities

dΛ
J = dΛ(wJ , xi) with c(wJ) = c(xi) (2)

dΛ
K = dΛ(wK , xi) with c(wK ) ≠ c(xi) (3)

correspond to the distances of the feature vector xi from the closest
correct (wrong) prototype wJ(wK ), respectively. In Eq. (1), Φ is
a monotonic function, e.g. the logistic function or the identity
Φ(x) = xwhich we will consider throughout the following.

In GMLVQ the distance measure is specified by an (N × N)
matrix, which can adapt to correlations of different features. It is
of the form of a Mahalanobis distance

dΛ(w, x) = (x − w)⊤Λ (x − w) (4)

with Λ ∈ RN×N . The matrix Λ is assumed to be positive
(semi-) definite. Hence, the measure corresponds to a (squared)
Euclidean distance in an appropriately transformed space and we
can substitute

Λ = Ω⊤Ω with Ω ∈ RN×N (5)

and, hence

dΛ(w, x) = [Ω (x − w)]2 (6)

with an arbitrary matrix Ω . Specific restrictions may be imposed
on Ω without loss of generality. Note that, for instance, every
positive symmetric Λ has a symmetric root Ω with Λ = Ω2.
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