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In recent years, manifold learning methods have aroused a great interest in the machine learning
community. A key issue that determines the effectiveness of the manifold learning methods is how to
accurately capture the local geometry of the low-dimensional manifold. However, most of the manifold
learning algorithms cannot exploit the real local geometry if the neighbors for each sample point are not
correctly selected. In this paper, we address this problem in the context of locally linear embedding (LLE).
A new local optimization model is proposed to find the local weights that can represent the real local
manifold geometry when the neighborhoods contain wrong neighbors. A new algorithm called real local-
linearity preserving embedding (RLLPE) is then proposed by preserving the exploited real local geometry.
We demonstrate the improvement and efficiency of RLLPE using both synthetic and real-word data.
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1. Introduction

The problem of dimensionality reduction, i.e., the transforma-
tion of high-dimensional data into meaningful low-dimensional
features, has aroused a great deal of interest in many research
fields, such as pattern recognition [6], data mining [23], image
processing [21], and computer vision [11]. Recently, there have
been much effort in developing effective and efficient algorithms
for learning meaningful nonlinear structure from the high-
dimensional data. These algorithms which include isometric
mapping (Isomap) [17], locally linear embedding (LLE) [15],
Laplacian eigenmaps (LE) [1], local tangent space alignment (LTSA)
[25], and so on, have some advantages over traditional linear
dimensionality reduction techniques.

Most of the existing manifold learning algorithms fail in learning
the low-dimensional structure if the neighbors of each point are not
correctly selected. This is because that the local linear structure
determined by the local optimization model cannot represent the
real local geometry of the manifold when the neighborhoods
contain wrong neighbors. For example, ISOMAP may estimate
wrong geodesic distances because of wrong neighbors. In LTSA,
wrong neighbors may lead to large bias in estimating the local
tangent space. In LLE, the calculated reconstruction weights of the
wrong neighbors may not represent the real local geometry. In this
paper, we address this problem in the context of LLE.

LLE is one of the most wildly used manifold learning methods
because of its simple geometric intuitions, straightforward implemen-
tation, and global optimization. However, it is also reported that LLE
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may not be stable since the constrained least squares (LS) problem
involved for determining the local weights may be ill-conditioned [19].
In the literature, there are two strategies for improving the stability of
the local geometry. A commonly used strategy is to introduce a
regularization parameter for the constrained LS problem [5,14,16].
Another strategy is to explore the local geometry by multiple weight
vectors or solving new constrained LS problem [7,19]. Despite the
appealing properties of these extensions in improving the stability of
LLE, they have a limited effectiveness when the neighborhoods contain
wrong neighbors. More detailed introductions on the extensions of
LLE are proposed in Section 4.

In this paper, we construct a new LS optimization model to find
the local weights that exploit the real local geometry. We try to
penalize the weights of wrong neighbors such that the undesirable
effect of the wrong neighbors on the reconstruction can be
reduced. A new algorithm called real local-linearity preserving
embedding (RLLPE) is then proposed by preserving the exploited
real local geometry.

The rest of this paper is organized as follows. In Section 2, we
give a quick review of LLE, and discuss some of its failure modes.
The real local-linearity preserving embedding algorithm (RLLPE) is
then presented in Section 3. After that, the related work will be
introduced in Section 4. We will give numerical experiments in
Section 5 to show the effectiveness of RLLPE. Some conclusion
remarks are given in Section 6.

2. A brief review of locally linear embedding

In this section, we first outline the basic steps of LLE and
illustrate its failure mode using two simple examples. Given a data
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set X =[x1,...,xy] with x;e R™, sampled (possibly with noise)
from a d-dimensional manifold (d <m), LLE proceeds in the
following steps.

(1) Setting local neighborhoods: For each x;, i=1,...,N, deter-
mine the neighbor set V; = {x;,,...,x; } of its neighbors.

(2) Extracting local geometry: For each x;, the local geometry of
its neighborhood W is determined by solving the constrained least
squares problem

min llx;— ¥ wixll2, st Ywp=1, 1)
wii €Ji Jjeli Jjel;
where J; = {ij, ..., i} is the index set of the neighbors.

(3) Embedding global coordinates: Map {X1,...,Xy} to {t1,...,tn}

in a d-dimensional space that preserves the local reconstruction
properties totally

min llt; —
T=[t1,.... rN]zi: !

Wj,‘fj I 2, s.t. TTT = Id, (2)
jel

JEJi

where I; is a d x d identity matrix.
Denote w; =[...,w;,...]", jeJ; and G =[....x;—xi,...], jeJ;. The
constrained LS problem (1) can be rewritten as

min | Gw; 112,

WI

s.t. 3)

1£Wl‘=1,
where 1y is the k-dimensional column vector with all ones.
Employing Lagrange theorem for minimizing (3), the optimal
weight vector can be given by
GiGyi=1. wi=y/1}y; 4)

If G/ G; is singular or nearly singular, it is not stable to obtain the
weights from (4). And it is suggested to solve the regularized linear

system replaced

Gl Gi+ryi=1  wi=yi/1}y; (5)

For example, it is proposed in [16] to set y =(A%/k)IG; 12 with
A=0.1.

Generally, LLE works well if the neighbors for each sample
point are correctly selected, i.e., the selected neighbors can reflect
the local geometric structure of the manifold. However, if the
neighborhoods contain wrong neighbors, LLE may fail even if the
regularization parameter y is well selected. In the rest of this
section, we give two failure examples of LLE.

Example 1. The data set is generated as x;=[t;, 10e 4],
i=1...,180, where t;e[—6, 6] are equally spaced. The sample
points are of a highly nonuniform density since the curvature of
the 1-D curve changes from O to 20 over t e [—6, 6].

Example 2. We generate the original data points as
x; =[sin(t;), cos(t;),3t;]", i=1,...,400 with t; equally spaced in
[0,4r]. Then we generate p=250 noisy points as

Yi=xi +0.5randn(3,1), j=1,....p,

where x; are randomly selected from the original data set and
randn is Matlab's standard normal distribution.

For the above two data sets, the neighbor sets determined by
k-NN or e-neighborhood methods may contain wrong neighbors;
see the left column in Fig. 1. LLE fails on these data sets. As it can
be seen in Fig. 1, the computed coordinates by LLE with different y
cannot recover the arc-length coordinates. We remark that LLE
combined with the regularization parameter selection methods
proposed in [5,14,16] also fails on the above two data sets (the
results are similar but are not reported here for brevity). This is
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Fig. 1. Examples 1 and 2: from left to right — the data set, the coordinates of LLE with y =106 GH,%, 10731 GH,ZT and 107 GH,ZT on the curve with highly varying curvature

(top row) and the curve with noise (bottom row) versus the arc length.
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