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Clustering methods are widely deployed in the fields of data mining and pattern recognition. Many of
them require the number of clusters as the input, which may not be practical when it is totally unknown.
Several existing visual methods for cluster tendency assessment can be used to estimate the number of
clusters by displaying the pairwise dissimilarity matrix into an intensity image where objects are
reordered to reveal the hidden data structure as dark blocks along the diagonal. A major limitation of the
existing methods is that they are not capable to highlight cluster structure with complex clusters. To
address this problem, this paper proposes an effective approach by using Markov Random Fields, which
updates each object with its local information dynamically and maximizes the global probability
measure. The proposed method can be used to determine the cluster tendency and partition data
simultaneously. Experimental results on synthetic and real-world datasets demonstrate the effectiveness

Visual assessment tendency
of the proposed method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is a fundamental technique in pattern recognition
and data mining [1,2]. The principle is to maximize inter-cluster
difference and minimize intra-cluster difference. Given a set of
data points, there are two major clustering approaches. One is
hard clustering, for example, K-means [3]. The other is fuzzy
clustering, for example, fuzzy C-means [4]. For those methods
requiring the number of clusters as the input, the first step is to
estimate the cluster tendency.

Visual clustering methods are widely used to assess the cluster
tendency, which generally require the pairwise dissimilarity
matrix as the input. A popular method is Visual Assessment of
cluster Tendency (VAT) [5]. The method produces an intensity
image, called Ordered Dissimilarity Image (RDI) or Reordered
Dissimilarity Image (RDI) [6], which is able to reveal cluster
tendency after suitably reordering the dissimilarity matrix [7].

Several algorithms extend the VAT method. bigVAT [8] and
SVAT [9] offer different ways to approximate RDIs for large scale
datasets. CCE [10] and DBE [11] use different schemes to auto-
matically estimate the number of clusters in RDIs. It has been
found that VAT is effective when data contains compact structures.
However, many real datasets involve highly irregular structures.
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In this paper, we propose a VAT based approach by using Markov
Random Field (MRF) [12] to handle with complex data structures.
Meanwhile, the membership matrix is computed simultaneously,
which can be directly used for fuzzy clustering. Experimental results
on synthesis and real datasets have demonstrated the effectiveness
of the proposed method.

The remainder of this paper is organized as follows. Section 2
briefly reviews the VAT algorithm and its extensions. The proposed
method is introduced in Section 3. The experimental results
are displayed and analyzed in Section 4, prior to the conclusion
in Section 5.

2. VAT and its extensions

Suppose X = {x;}, denotes the set of n data points and D=
[dijl,n is the dissimilarity matrix, of which each element denotes
the difference between two data points, satisfying dj =d; and
di; = 0. The goal of the VAT method is to find a permutation rule
to reorder the rows of the dissimilarity matrix. The reordered
dissimilarity matrix, D, displays as an intensity image. Such D is
expected to have a block diagonal form. If x; is a member of a
cluster, the corresponding d;; should be in a sub-matrix with low
dissimilarity values, which appears as one of the dark blocks along
the diagonal of the VAT image. Each dark block can be regard as a
potential group. The VAT algorithm can be found in Table 1 taken
from [13].
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Table 1
VAT algorithm.

Input: An n x n scaled matrix of pairwise dissimilarities D = [d;], with 1>d;; > 0:d;; =d;i:d;; =0, for 1<ij<n

(1): Setl=@,J=1{1,2,...,n} and #= (0,0, ...,0).
Select (i,j) € argy . qe; Max {dpq}.
Set z(1) =1, I {i} and J«J — {i}.
(2): Repeat for t =2,3,...,n
Select (i,j) € arg, . q.; min {dpq)-
Set z(t) =Jj, update I I U {j} and J ] — {j}.
(3): Form the reordered matrix D = [djj] = [dyxg)), for 1 <i,j<n.

Output: A scaled gray-scale image I(D), in which max {d:-j} corresponds to white and min {zf,-j} to black.
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Fig. 1. The original scatter (left) includes four groups. The VAT algorithm uses the pairwise dissimilarity matrix (middle) of the scatter as the input and generates a reordered
pairwise matrix (right). There exists 4 distinct black squares along the diagonal, which indicates 4 clusters in the original scatter.

An example of VAT is shown in Fig. 1, in which (left) the scatter
plots of data consist of n=4000 points in R?. These data points
are generated from a mixture of bi-variate Gaussian distributions.
The dissimilarity metric is computed by the Euclidean distance
between every two points. The 4 visually apparent clusters in (left)
are displayed by 4 distinct dark blocks along the diagonal in
(right), which is the VAT image of the data. Therefore, reordering is
necessary to reveal the underlying cluster structure of data, in
contrast to the image (middle) of the input pairwise dissimilarity
matrix in an original order.

The VAT algorithm performs well on datasets with compact
structures. However, such assumption is often hard to satisfy
in the real-world task. Fig. 2 is a toy example of this case.
To address this problem, several extensions have been proposed,
e.g., improved VAT (iVAT) [6] and Spectral VAT (SpecVAT) [13]. The
iVAT algorithm is based on the path-transformation (Eq. (1)). Here,
d;j represents the weight of the edge between x; and x;, P;; is the set
of all possible paths from x; to x;. |p| is the number of vertices along
path p and p[h] is the index of the hth vertex along path p. For each
path p e Py, the effective dissimilarity between x; and x; along p is
the maximum of all weights of this path. Reordering the new
matrix D' = [d;j]nxn obtains the iVAT image (Fig. 2 right).

dij = ygi,g{1 max_ dpihiptn-+ 11}- M

The SpecVAT algorithm is based on spectral transformation
[13]. The key of SpecVAT is graph embedding, which first calcu-
lates a weighted affinity matrix and uses the Laplacian Eigenmap
to transform the pairwise dissimilarity matrix, and then applies
the VAT algorithm on this transformed matrix.

3. Markov random field VAT (MrfVAT)

The VAT algorithm often fails on datasets with highly compli-
cated structure. And iVAT has limitations when there is too much
noise along the paths when conducting path-transformation.

SpecVAT, which uses graph-embedding techniques, has also
two major weaknesses: one is that the qualities of reordered
images by SpecVAT largely depend on the selection of the number
of eigenvectors; the other is that SpectVAT fails on sparse
and uneven datasets, due to its dimensionality reduction method.
Besides, these algorithms can be generally used for cluster ten-
dency assessment, not capable for data partition and labeling.
Based on those intuitions, we propose a novel method for visual
cluster analysis with the Markov Random Field model [12].

The first step of our model is to construct a graph based on the
input dataset. In our case, it is a full connected graph, where each
data point is regarded as a node and the edge between two nodes
is their dissimilarity computed by the Euclidean distance, thus
leading to an undirected graphical model. Meanwhile, it is natural
to think that the neighbor of a node will provide extra information.
If we change the range of the neighbor from several nearest nodes
to the entire graph, it obviously provides the spatial information.
This is the way to compute the global probability. With more
exploration, we find that the graph holds the local Markov
property [14]. Second, we construct a scatter graph representation
for the dissimilarity matrix. The next step is to build the local
update system by the Markov property. Meanwhile, a criterion is
set to stop the iteration. When we find the optimal k nearest
neighborhood system (later will explain), we will complete data
partition.

Here is the details of our method. At first, there are n groups,
written as 2 = {w; = i}, where ) is the label of x;. The membership
matrix B =[by],,, is set to identity matrix, where b; = p(w; =j).
Definition 1 is the neighborhood system, which will be used to
compute the global probability in Definition 2.

Definition 1. X = {x;},, is the set of nodes and S = {Sx, = X|x; € X}
is a family of subsets of X. Note that Sy, is the neighborhood
of x; and x;¢Sy. S is called a neighborhood system, if vr,teX,
teS, < reS;. That means the neighborhood relation is anti-
reflexive and symmetric, but not transitive [15].
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