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a b s t r a c t

In this paper, a novel class of stochastic coupled systems on networks with Markovian switching is
presented. In such model, the white noise, the color noise and the coupling between different vertices of
the network are taken into account. Focusing on the boundedness problem, this paper employs the
Lyapunov method, some graph theory and the method of M-matrix to establish some simple and easy-
verified boundedness criteria. These criteria can directly show the link between the graph structure of
the network and the dynamics of coupled systems. Finally, stochastic coupled van der Pol's equations
with Markovian switching are used to demonstrate our findings. Meanwhile, two numerical examples
are also provided to clearly show the influence of coupled structure on the boundedness of coupled
systems.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, coupled systems on networks (CSNs) become increas-
ingly significant, since it can model the evolution of complex
networks of diverse nature, including coupled lasers in physics,
neuronal networks in biology and communication networks in
technology [1–7]. Therein, many researchers devoted themselves
to the study of dynamical properties for CSNs such as stability,
boundedness and synchronization (see [8–13] and the references
therein). It is well-known that boundedness of solutions plays a
critical role in investigating the existence of the periodic solution,
the uniqueness of equilibrium, kinds of global stability problems,
chaos control and synchronization, and so on [14–16]. Therefore,
the boundedness analysis of CSNs is a significant problem and thus
has been extensively investigated [17–20]. For instance, in [17], Liu
and Chen discussed the boundedness problem of the y-coupled
Lorenz systems with or without controllers. In [19], Fu et al.
considered the uniform boundedness of the global solutions for
a strongly coupled three-species cooperating model. Moreover, the
relation between the boundedness criterion and the topology
property for some CSNs was also concerned in [20].

In practice, the dynamic structure of CSNs is prone to various
types of stochastic disturbances including white noise and color
noise. This fact demonstrates that it is critical in many fields to

discover whether the presence of such noise will significantly
affect the systems [21–24]. In recent years, more attention was
paid to the CSNs under the perturbation of white noise. For
instance, in [25], a systematic method for constructing the global
Lyapunov function for stochastic coupled systems on networks
(SCSNs) was proposed by combining some graph theory and the
Lyapunov method. However, to the authors' best knowledge, there
exist few results reported to the CSNs with the perturbation of
color noise.

In this paper, our intention is to analyze the asymptotic bound-
edness for stochastic coupled systems on a network with Markovian
switching (SCSNMS) as follows:

dxkðtÞ ¼ f kðxkðtÞ; t; rðtÞÞþ ∑
hAL

HkhðxkðtÞ; xhðtÞ; t; rðtÞÞ
" #

dt

þ gkðxkðtÞ; t; rðtÞÞþ ∑
hAL

NkhðxkðtÞ; xhðtÞ; t; rðtÞÞ
" #

dWðtÞ; kAL: ð1Þ

In such model, both white noise and color noise are taken into
account. Here, white noise refers to the generalized mean-square
derivative of Brownian motion Wð�Þ. Color noise is modeled by a
finite-state Markovian switching rð�Þ since it can always be described
as a random switching between two or more environmental regimes.
Obviously, SCSNMS (1) could be described on a digraph and the
detailed description will be shown in the next section.

In general, the boundedness analysis for (1) is a formidable task.
On the one hand, both the coupling structure and the presence of
Markovian switching and white noise will affect the boundedness of
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(1). It should be noted that the main challenge in studies of
dynamical network (1) is to relate the structure of the graph of the
network to its dynamics [26]. On the other hand, the available
approach for showing the asymptotic boundedness of some systems
with Markovian switching is essentially based on the common
Lyapunov method or variations of the same framework. However,
it is quite difficult to construct an appropriate Lyapunov function and
this is a well known disadvantage of Lyapunov method. Also, the
boundedness criterion of many SCSNMSs obtained from this method
is often too conservative for practical applications.

The above discussion clearly shows that analyzing the bounded-
ness problem of SCSNMS (1) is not trivial and some newmethod must
be introduced. Recently, a new graph-theoretic approach to the
method of global Lyapunov functions was proposed by [27,28]. The
authors used graph theory to explore the global stability for a general
deterministic coupled system on networks, and the sufficient condi-
tions for the global asymptotical stability were given. Furthermore, in
[29,30], the global stability for several classes of multi-groupmodels in
mathematical epidemiology was effectively investigated by the
method. Moreover, the technique was developed for SCSNs with or
without Markovian switching, and many stability criteria were
obtained in [25,31,32]. Meanwhile, this new graph-theoretic method
has also been applied on the boundedness of some concrete stochastic
coupled networks: stochastic coupled van der Pol oscillators with
time-varying delayed coupling [33] and stochastic Cohen–Grossberg
neural networks with Markovian switching [15]. However, till now,
there is no boundedness result for the general SCSNMS (1) based on
this new approach.

Motivated by the above discussions, the aim of this paper is to
develop a general approach to construct the Lyapunov function for
SCSNMS (1) based on the Lyapunov method and graph theory in
[25,27], and furthermore, to give the sufficient conditions which
ensure the asymptotic boundedness for SCSNMS (1). Compared to
the existing results (e.g., [25,27] and other results), contributions of
this paper are as follows. Firstly, this paper focuses on the bounded-
ness, while existing results are mainly about the stability. In fact,
except for the stability property, boundedness is also one of the
foundational concepts of dynamical systems. What is more, the
property of boundedness of solutions plays an important role in many
investigations. Secondly, in the model of our paper, three important
factors including the white noise, the color noise and the coupling
between different vertices of the network are taken into account. But
the existing results always only consider one or two factors, which
may not be so consistent with the fact. Finally, in addition to adopting
new graph-theoretic method in existing results, the method of M-
matrix is also used to get the criterion about boundedness.

This paper is arranged as follows. In Section 2, some useful
notations, lemma and problem formulation are stated. Section 3 is
devoted to giving a criterion on the asymptotic boundedness in pth
moment in terms of the Lyapunov method and graph theory.
Moreover, to obtain some more simple and easy-verified asymptotic
boundedness conditions, another criterion is investigated by combin-
ing the method of M-matrix. In Section 4, to demonstrate the
application of the proposed generalized approaches, the asymptotic
boundedness for some coupled van der Pol's equations with Marko-
vian switching on networks is studied and the numerical simulations
are also given, which is followed by conclusions in Section 5.

2. Preliminaries

In this section, we need to state some useful notations, lemma
and definition associated with asymptotic boundedness in pth
moment. Moreover, the problem formulation is also presented.

Let ðΩ;F ; F;PÞ be a complete probability space with filtration
F¼ fF tgtZ0 satisfying the usual conditions, and Wð�Þ be a one-

dimensional Brownian motion defined on the space. The mathe-
matical expectation with respect to the given probability measure
P is denoted by Eð�Þ. Let r(t) be a right-continuous Markov chain
taking values in a finite state space S¼ f1;2;…;Ng with generator
Γ ¼ ðγijÞN�N given by

PfrðtþΔÞ ¼ jjrðtÞ ¼ ig ¼
γijΔþoðΔÞ if ia j;

1þγiiΔþoðΔÞ if i¼ j;

(

where Δ40 and γijZ0 is the transition rate from i to j while
γii ¼ �∑ia jγij. Denote j � j as the Euclidean norm for vectors or the
trace norm for matrices. Through this paper, we shall use the
notations Zþ ¼ f1;2;…g, L¼ f1;2;…; lg, m¼∑kALmk, where mk

AZþ , Rn
þ ¼ fxARn : xi40; i¼ 1;2…;ng and Rn

0 ¼Rn�f0g.
To describe SCSNMS (1) on a digraph, it is necessary to show

the basic concepts and notations on graph theory [34]. A digraph G
is weighted if each arc (h,k) is assigned a positive weight akh.
Define the weighted matrix A¼ ðakhÞl�l whose entry akh equals the
weight of arc (h,k) if it exists, and 0 otherwise. Denote the directed
graph with weight matrix A as ðG;AÞ. The Laplacian matrix of
ðG;AÞ is defined as L¼ ðpkhÞl�l, where pkh ¼ �akh for kah and
pkh ¼∑jakakj for k¼h. Here we show a lemma which will be used
in the proof of our main theorem.

Lemma 1. Assume that lZ2 and ck(i) denotes the cofactor of the kth
diagonal element of Laplacian matrix of ðG;AðiÞÞ, AðiÞ ¼ ðakhðiÞÞl�l.
Then the following identity holds:

∑
k;hAL

ckðiÞakhðiÞFkhðxk; xh; t; iÞ ¼ ∑
QAQ

WðQÞ ∑
ðs;rÞAEðCQÞ

Frsðxr ; xs; t; iÞ:

Here iAS, Fkhðxk; xh; t; iÞ ðk;hALÞ are arbitrary functions, Q is the set
of all spanning unicyclic graphs of ðG;AðiÞÞ, WðQÞ is the weight of Q,
and CQ denotes the directed cycle of Q. In particular, if ðG;AðiÞÞ is
strongly connected, then ckðiÞ40 for kAL.

Proof of this lemma is similar to which appeared in Theorem
2.2 in [27]. It just needs some obvious modifications, so we omit it
here for brevity.

Now we use digraph G¼ ðM; EÞ to describe SCSNMS (1), in
which G contains a set M¼ f1;2;…; lg of vertices and a set E of arcs
(k,h) leading from initial vertex k to terminal vertex h. Firstly, in
the kth vertex, assign an mk-dimensional stochastic differential
equation with Markovian switching (refer to the kth vertex
system):

dxkðtÞ ¼ f kðxkðtÞ; t; rðtÞÞ dtþgkðxkðtÞ; t; rðtÞÞ dWðtÞ; tZ0;

where xkðtÞARmk , f k; gk : R
mk � R1

þ � S-Rmk . Secondly, let Hkh;

Nkh : Rmk � Rmh � R1
þ � S-Rmk represent the influence of vertex

h on vertex k and Hkh ¼Nkh ¼ 0 if there exists no arc from h to k in
G. Then by coupling the l vertex systems by Hkh and Nkh, i.e.
replacing fk and gk by f kþ∑hALHkh and gkþ∑hALNkh, respectively,
SCSNMS (1) is thus obtained.

As usual, throughout this paper, we suppose that both fk and gk
satisfy certain conditions so that (1) has a unique global solution,
denoted by xðt; x0; r0Þ ¼ ðx1ðtÞ;…; xlðtÞÞT , where superscript T means
transform. In the paper we mainly consider the asymptotic
boundedness of (1), whose definition is given as follows.

Definition 1 (Mao and Yuan [22]). SCSNMS (1) is said to be
asymptotically bounded in pth moment (p40), if there is a
positive constant M such that

lim sup
t-1

Ejxðt; x0; r0ÞjprM

for all ðx0; r0ÞARm � S. Particularly, it is said to be asymptotically
bounded in mean square when p¼2.

Under some simple conditions, it can be shown that xðt; x0; r0Þ
will never reach zero whenever x0a0 (see [22], Lemma 5.1).
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