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a b s t r a c t

Dedicated hardware is becoming increasingly essential to simulate emerging very-large-scale neural
models. Equally, however, it needs to be able to support multiple models of the neural dynamics,
possibly operating simultaneously within the same system. This may be necessary either to simulate
large models with heterogeneous neural types, or to simplify simulation and analysis of detailed,
complex models in a large simulation by isolating the new model to a small subpopulation of a larger
overall network. The SpiNNaker neuromimetic chip is a dedicated neural processor able to support
such heterogeneous simulations. Implementing these models on-chip uses an integrated library-based
tool chain incorporating the emerging PyNN interface that allows a modeller to input a high-level
description and use an automated process to generate an on-chip simulation. Simulations using both
LIF and Izhikevich models demonstrate the ability of the SpiNNaker system to generate and simulate
heterogeneous networks on-chip, while illustrating, through the network-scale effects of wavefront
synchronisation and burst gating, methods that can provide effective behavioural abstractions for large-
scale hardware modelling. SpiNNaker’s asynchronous virtual architecture permits greater scope for
model exploration, with scalable levels of functional and temporal abstraction, than conventional (or
neuromorphic) computing platforms. The complete system illustrates a potential path to understanding
the neural model of computation, by building (and breaking) neural models at various scales, connecting
the blocks, then comparing them against the biology: computational cognitive neuroscience.

© 2011 Elsevier Ltd. All rights reserved.

1. Dedicated hardware, dedicated model?

Neural network modelling is transitioning from relatively
small-scale models that simulate relatively small ‘‘subcircuits’’ or
specific behavioural functions to large-scale models attempting
realistic simulation of large areas of the brain and complex
interactions between behavioural regions. The challenges of this
scale of modelling are formidable. Much depends on what the
level of process abstraction is: there is as yet no clear consensus
on whether detailed behaviour at the level of ion channels is
critical (Ananthanarayanan & Modha, 2007; Migliore, Cannia,
Lytton, Markram, & Hines, 2006). There is, furthermore, a lurking
data-analysis problem: even if the system could perform a detailed
simulation at the channel level of a large-scale area, the potential
volume of data on the simulation could extend to the terabyte-
level or even larger (with, say, a network containing 1012 synaptic
connections). Quite aside from the storage requirement, the
question becomes one of arranging anddisplaying the data in away
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that can be made intelligible to the human researcher. Simulating
large-scale neural networks thus requires various levels of
abstraction. The research community also accepts, in themain, that
large-scale neuralmodelling needs dedicatedhardware (Johansson
& Lansner, 2007). Dedicated neural hardware, however, has its own
problem: what neural model to implement?

The intuitively obvious approach is to make the hardware be a
literal translation of a givenmodel into circuitry (Indiveri, Chicca, &
Douglas, 2006). Modern ‘‘neuromorphic’’ architectures have been
more intimately concerned with biological plausibility than pre-
vious designs, usually implementing spiking networks with full
dynamics (Pelayo, Ros, Arreguit, & Prieto, 1996). An important
motivation for using neuromorphic chips has always been that
it is possible to fabricate analogue devices whose characteristics
have real similarities with biological neurons (Hynna & Boahen,
2006). An analogue chip can not merely ‘‘simulate’’ a neural net-
work, it can be a neural network, physically implemented in sili-
con (Zaghloul & Boahen, 2006). However, this intuitively elegant
direct-implementation capability has also been conceptually lim-
iting, because as a result most neuromorphic chips directly imple-
ment a specific model in hardware (Pelayo et al., 1996), with some
general-purpose reconfigurability to tailor the system for different
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Fig. 1. SpiNNaker test chip. Image taken from the GDS2 plot sent to manufacture.
The chip was fabricated at UMC using their 130e-llsp low-power process. Die size
is 5 × 5 mm.

parameter values (Vogelstein,Mallik, Vogelstein, & Cauwenberghs,
2007), eliminating the possibility of implementing different neural
modelswith the samehardware. ‘‘Direct implementation’’ is in fact
a somewhat misleading concept, because the ‘‘real’’ model of neu-
ral processing is unknown (outside certainwell-studied areas such
as the retina), providing no certainties a chip, whether analogue or
digital, is directly implementing anything (Furber & Temple, 2007;
Thomas & Luk, 2009).

Complicating the problem is a gap in mutual understanding
between the divergent goals of the hardware designers, who
typically are interested in the nature of the neural model of
computation (Westerman, Northmore, & Elias, 1997), and the
neurobiologists, who tend to be more interested in the causes and
effects of neural computation (Yu & Cauwenberghs, 2010) Thus
the two groups need very different types of models and chips,
and a single, ‘‘hardwired’’ chip is not likely to be suitable for
both. A better hardware platform would be one that permitted
experimentation between various models, at different levels of
abstraction, so that modellers could use detail where it was
necessary for characterising a neural model, abstract descriptions
when understanding systembehaviourwas paramount or for parts
of a larger network model not under intense study.

Rather than make a priori decisions about which model
is appropriate, we propose an architecture that facilitates the
exploration of different models, at various different levels of
abstraction. Such a system permits different research groups,
with different goals, to simulate neural networks with hardware
acceleration, adding model detail where it is relevant for the
research problem under study, while abstracting parts of the
model necessary for functionality, but either not central to the
research question, or important to simplify in order to uncover the
fundamental dynamics. This ‘‘neuromimetic’’ architecture (Rast
et al., 2010b) uses a universal neural chip, SpiNNaker (Fig. 1),
to demonstrate how to implement different neural models at
various scales and simulate them simultaneously on the same
system, using an integrated tool chain to convert model-level
representations into device-level configurations. This system
recasts the purpose of neural hardware from that of a model-
specific simulation accelerator to that of a tool for real-time,
multiscale model exploration.

2. Requirements for scalable multimodel simulation

Simulation of neural networks with multiple, heterogeneous
neural and synaptic models tends to be done mostly in software.
Much of this is due to the intrinsic assumptions of the field:
most researchers expect that the hardware will ‘‘hard-wire’’ the
neural model into the silicon, effectively preventing multimodel
simulation. Even software attempts have been relatively limited,
however, and as in Lange (1990) conclude that existing general-
purpose hardware is usually inadequate because of architectural
mismatch. In the case of spiking neural networks, there is also
a tendency to regard a model with different parameter values
between neurons as an ‘‘heterogeneous’’ model (Merolla & Boahen,
2006; White, Chow, Ritt, Soto-Treviño, & Kopell, 1998), even
though the actual dynamic equations may remain the same. While
the effect of parameter variation is an interesting research area,
it does not reveal the effects of varying the actual equations
themselves; and the different possible dynamics of neurons with
different equations can vary dramatically, often with significant
consequences for the network’s computational capability or
biological fidelity (Izhikevich, 2004).

Realistically, a truly scalable neural network hardware platform
will involve dedicated, full-custom chips (Jahnke, Schönauer, Roth,
Mohraz, & Klar, 1997). If heterogeneousmodel simulation is a goal,
there is a tradeoff between architectures: the programmability of
digital or the low power and efficiency of analogue. Digital designs
are readily programmable and can take advantage of aggressive
process technology roadmaps, making them a seemingly natural
choice. However, they need a high transistor count per neuron, are
the most power-hungry, and have the least natural fit with bio-
logical prototypes (Joseph & Gupta, 2010). Caught between these
opposing poles of equally powerful advantages and disadvantages,
digital chips have therefore been exercises in design tradeoff (Kaul-
mann, Dikmen, & Rückert, 2007; Mahoney & Elhanany, 2008).
With analogue designs, the introduction of programmable ana-
loguememories, chiefly floating-gate based (Diorio, Hasler, Minch,
&Mead, 1997; Holler, Tam, Castro, & Benson, 1989), has eliminated
whatwas historically themost vexing barrier: weight programma-
bility, but programmable analogue circuitry is still very much in its
infancy (Basu et al., 2010; Lehtonen & Laiho, 2010), a long way off
standardisation. However, in both analogue and digital, the most
limiting factor may be conceptual: if the architecture assumes one
hardware block per neuron, wire density and power are inevitably
going to become factors at large scales.

An emerging neural data communications standard: Address-
Event Representation (AER) (Lazzaro, Wawrzynek, Mahowald,
Silviotti, & Gillespie, 1993), has the potential to eliminate this
conceptual barrier. AER uses packets that encode the source
of the spike as an address and is a proven, efficient way to
serialise and then multiplex multiple neural signals onto the
same series of lines (Boahen, 2000). An AER device can be made
configurable, using the same packet-switched interconnect to
send the configuration data, and by virtue of being asynchronous
mitigates the power problems that arise with synchronous parallel
bus architectures (Schemmel, Fieres, & Meier, 2008). AER is well
established on the way to becoming a defined standard (Chicca
et al., 2007), thus making it the signalling method of choice for
future neural designs.

There remains a major gap in tool support: neuromorphic
architectures tend not to integrate seamlessly into existing sim-
ulators (Brüderle et al., 2009) thus using such chips has, histori-
cally, been difficult (Steinkraus, Buck, & Simard, 2005). Recently,
PyNN (Davison et al., 2009) has emerged as a common, cross-
platform standard for defining and simulating neural networks.
PyNN contains plug-inmodules for a wide variety of common neu-
ral simulators, and extending it is a matter simply of writing a
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