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a b s t r a c t

Supervised learning is investigated, when the data are represented not only by labeled points but also
labeled regions of the input space. In the limit case, such regions degenerate to single points and the
proposed approach changes back to the classical learning context. The adopted framework entails the
minimization of a functional obtained by introducing a loss function that involves such regions. An
additive regularization term is expressed via differential operators that model the smoothness properties
of the desired input/output relationship. Representer theorems are given, proving that the optimization
problem associated to learning from labeled regions has a unique solution, which takes on the form of a
linear combination of kernel functions determined by the differential operators together with the regions
themselves. As a relevant situation, the case of regions given by multi-dimensional intervals
(i.e., “boxes”) is investigated, which models prior knowledge expressed by logical propositions.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The classical supervised learning framework is based on a
collection of ℓ labeled points, L¼ fðxκ ; yκÞ; κ¼ 1;…;ℓg, where
xκAXDRd and yκAf�1;1g. We consider the situation in which
supervised learning exploits not only labeled points but also ℓX
labeled regions LX ¼ fðX κ ; yκÞ; κ¼ 1;…;ℓX g of the input space,
where X κA2X and yκAf�1;1g. In the limit case such regions
degenerate to single points, so we focus on a fairly general context
in which there is no distinction between the supervised entities
and we deal with ℓt≔ℓþℓX labeled pairs. This framework and its
potential impact in real-world applications has been investigated
in different contexts (see [1] and the references therein).

A seminal work in this respect is [2], where it was proposed to
embed labeled polyhedral sets into Support Vector Machines (SVMs).
The corresponding model, called Knowledge-based SVM (KSVM), has
been the subject of a number of various investigations [3–6]. A
particularly relevant situation corresponds to regions given by multi-
dimensional intervals (i.e., “boxes”) X κ ¼ fxARd : xiA ½aiκ ; biκ �; i¼ 1;
…; dg, where aκ ; bκARd collect the lower and upper bounds, respec-
tively. The pair ðX κ ; yκÞ formalizes the knowledge provided by a
supervisor in terms of logical propositions of the form 8xARd;

⋀d
i ¼ 1ððxiZaiκÞ4ðxirbiκÞÞ ) classðyκÞ.

In [7], the problem of learning was extended by taking into
account the supervision on multi-dimensional intervals of the
input space, which model prior knowledge expressed by logical
propositions. The effectiveness of such an approach was evaluated
therein via simulations on real-world problems of medical diag-
nosis and image categorization. Taking the hint from the numer-
ical experiments presented in [7], in this paper we give theoretical
insights into the learning paradigm proposed therein.

We formulate the problem of learning via supervision on input
regions by introducing a loss function that involves them and
adopting the regularization framework proposed in [8]. Each
region X κ is associated with its characteristic function 1X κ ðxÞ and
its normalized form 1̂X κ ðxÞ≔1X κ ðxÞ=

R
X1X κ ðxÞ dx degenerates to the

Dirac distribution δðx�xκÞ in the case in which X κ ¼ fxκg. We
model the corresponding learning problem as the minimization,
over an infinite-dimensional space (whose elements are the admis-
sible solutions to the supervised learning task) of a functional,
called regularized functional risk, that consists of two terms. The
first term enforces closeness to the labeled data (regions and
points), whereas the second one, called regularization term,
expresses requirements on the global behavior of the desired
input/output functional relationship. The trade-off between such
terms is achieved by a weight parameter, as typically done in
Tikhonov's regularization [9].

We express the regularization term via differential operators,
following the line of research proposed in [8]. The loss term results
from the following two contributions: one from regions with non-
null Lebesgue measure and another one that originates from
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points. As the minimization of such a functional entails a difficult
infinite-dimensional problem, we also consider learning modeled
as a more affordable variational task obtained by replacing
the functional risk with an average risk. We show that in this
case the infinite-dimensional optimization collapses to a finite-
dimensional one. As ambient spaces we consider Sobolev spaces of
orders guaranteeing that they are made up of continuous func-
tions, in such a way that the learning functionals are well-defined
when the regions degenerate to points.

Under the hypothesis that the Green's function of the regular-
ization operator is the kernel of a Hilbert spaces of a special type,
called reproducing kernel Hilbert space1 (RKHS) [14], we prove new
representer theorems (see, e.g., [15, p. 42], [16–19]), showing that
the minimization problem has a unique solution, which takes on
the form of a linear combination of kernel functions determined
by the differential operators together with the labeled regions. So,
the solution to the regularized problem of learning from regions
does not lead to the kernel expansion on the available data points
and the kernel is no longer the Green's function of the associated
operator, as instead it happens from classical results of this kind
(see [20] and [21, p. 94]).

As a meaningful learning case, we investigate regions given by
multidimensional intervals (i.e., “boxes”), which originates the box
kernels. Fig. 1 shows an example of box kernels in the case of a
non-linear kernel-machine classifier. First, the classifier is trained
on a 2-class data set of points, and the separating hyperplane is
depicted in Fig. 1(a). Then, a supervision is given on two space
regions bounded by multi-dimensional intervals; Fig. 1(b) shows
the resulting separation boundary. The box kernel allows the
classifier to embed knowledge on labeled space regions, whereas
classical kernels are designed to operate merely on points.

The paper is organized as follows. In Section 2 we state the
problem of learning from labeled regions and/or labeled points as
the infinite-dimensional minimization of the functional risk. We
investigate existence and uniqueness of its solution on the
Sobolev space of functions that are square-integrable together
with their partial derivatives up to a suitable order. Section 3
provides representer theorems for such a solution and considers
the learning problem modeled via the minimization of the
average risk. The particular case of regions given by multi-
dimensional intervals (i.e., “boxes”) is addressed in Section 4. In
Section 5 we compare the two learning problems associated with
the minimizations of the functional risk and the average risk,

respectively. To make the paper self-contained, two appendices
are provided on RKHSs and functionals. Preliminary results were
presented in [7].

2. Learning from labeled regions and points

We formulate the problem of learning from labeled regions
and/or labeled points in a unique framework, where each point
corresponds to a singleton. Given a labeled set X κ , the character-
istic function 1X κ ðxÞ associated with it is identically 1 when xAX κ ,
otherwise it is identically 0. Denoting by volðX κÞ ¼

R
Rd1X κ ðxÞ dx the

measure of the set, the normalized characteristic function is
1̂X κ ðxÞ≔1X κ ðxÞ=volðX κÞ. When the region degenerates to a single
point xκ we denote by 1̂X κ ðxÞ the Dirac delta δðx�xκÞ.

Let w : X-Rþ be a continuous weight function (e.g., propor-
tional to the probability density p : X-Rþ of the inputs), V :

R2-Rþ a convex and differentiable loss function, λ40 a regular-
ization parameter, and P≔ðP0;…; Pr�1Þ a vector of r finite-order
differential operators of maximum order of derivation k and with
constant coefficients, with formal adjoint P⋆ [22,23]. Adopting the
framework described in [8], we formulate the problem of learning
from labeled regions as the minimization on a suitable class of
functions F of the functional

Rðf Þ≔ ∑
κANℓt

Z
Rd
Vðyκ ; f ðxÞÞ �wðxÞ � 1̂X κ ðxÞ dxþ

λ

2
‖Pf ‖2; ð1Þ

where Nm denotes the set of the first m positive integers,

‖Pf ‖2≔ðPf ; Pf Þ ¼ ðP⋆Pf ; f Þ ¼ ðLf ; f Þ;

ðf ; gÞ≔
Z
Rd
f ðxÞ � gðxÞ dx;

and L≔P⋆P (which has 2k as its maximum order of derivation). We
call Rð�Þ in Eq. (1) the regularized functional risk. When all the
regions degenerate to points, we get ℓt ¼ ℓ, 1̂X κ ðxÞ ¼ δðx�xkÞ, and
Eq. (1) becomes

Rðf Þ≔ ∑
κANℓ

V ðyκ ; f ðxκÞÞ �wðxκÞþ
λ

2
‖Pf ‖2; ð2Þ

which is the classical form of the regularized risk [24] when
supervision is performed on labeled points.

We search for the minimizer f ○ in the Sobolev space F ¼Wk;2,
i.e., the subset of L2 whose functions have square-integrable weak
partial derivatives up to the order k. The loss term in Eq. (1) can be
considered as resulting from the following two contributions:
∑κANℓX

R
RdV ðyκ ; f ðxÞÞ �wðxÞ � 1̂X κ ðxÞ dx, coming from a region with

non-null Lebesgue measures volðX κÞ, and ∑κANℓwðxκÞ � Vðyκ ; f ðxκÞÞ,

Fig. 1. (a) A two-class data set and the separating surface learned by a non-linear kernel-machine classifier. Examples of class 1 are represented by red crosses, whereas
examples of class 2 are drawn with blue dots. (b) The data collection is augmented with two labeled space regions (bounded by the blue-dotted rectangle in the case of class
1, by the red-solid box for class 2). A kernel machine is trained using a box kernel, which allows the classifier to learn from the whole data collection (points and regions). The
resulting class-separation boundary is shown. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

1 Such spaces were introduced into applications closely related to learning by
Parzen [10] and Wahba [11], and into learning theory by Cortes and Vapnik [12] and
Girosi [13].
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