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a b s t r a c t

Multivariate Gaussian distribution is a popular assumption in many pattern recognition tasks. The
quadratic discriminant function (QDF) is an effective classification approach based on this assumption.
An improved algorithm, called modified QDF (or MQDF in short) has achieved great success and is widely
recognized as the state-of-the-art method in character recognition. However, because both of the two
approaches estimate the mean and covariance by the maximum-likelihood estimation (MLE), they often
lead to the loss of the classification accuracy when the number of the training samples is small. To attack
this problem, in this paper, we engage the graphical lasso method to estimate the covariance and propose
a new classification method called the graphical lasso quadratic discriminant function (GLQDF). By
exploiting a coordinate descent procedure for the lasso, GLQDF can estimate the covariance matrix (and
its inverse) more precisely. Experimental results demonstrate that the proposed method can perform
better than the competitive methods on two artificial and nine real datasets (including both benchmark
digit and Chinese character data).

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Statistical techniques are widely used for classification in
various pattern recognition problems [14]. Statistical classifiers
include linear discriminant function (LDF), quadratic discriminant
function (QDF), Parzen window classifier, nearest-neighbor
(1-NN), k-NN rules and margin classifiers [13,12]. QDF is derived
under the assumption of multivariate Gaussian distribution for
each class. Despite its simplicity, QDF and its variants have
achieved great success in many fields. In a performance evaluation
study of classifiers in handwritten character recognition, QDF and
its variants were shown to be superior in the resistance to
noncharacters even though they were not trained with nonchar-
acter data. The parameters involved in QDF, e.g., the mean and the
covariance, are often obtained via the principle of the maximum-
likelihood estimation (MLE) [10]. MLE has a number of attractive
features. First, it usually has good convergence properties as the
number of training samples increases. Furthermore, it can often be
simpler than alternative methods, such as Bayesian techniques.
However, when the number of training samples is small (especially
when compared to dimensionality), the estimated covariance based

on MLE could be often ill-posed, making the covariance matrix
singular; this further leads its inverse matrix to not be computed
reliably.

To solve this problem, there have been a number of approaches
in the literature. Modified quadratic discriminant function (MQDF)
[15] is proposed to replace the minor eigenvalues of covariance
matrix of each class with a constant parameter. This small change
proves very effective and has made MQDF a state-of-the-art
classifier in character recognition. However, the substitution of
minor eigenvalues with a constant inevitably loses some class
information. Meanwhile, the cutoff threshold of minor eigenvalues
and the constant selection are critical for the final performance.
Liu et al. [19] proposed a discriminative learning algorithm called
discriminative learning QDF (DLQDF). It optimizes the parameters
of MQDF with the aim to improve the classification accuracy based
on the criterion of minimum classification error (MCE). Similar
to MQDF, DLQDF has the same problem in parameter selection.
Alternatively, the regularized discriminant analysis (RDA) [6]
improves the performance of QDF by covariance matrix interpola-
tion. Hoffbeck and Landgrebe further extended RDA by optimizing
the interpolation coefficients [11]. Empirical results showed that
these two algorithms can usually improve the classification perfor-
mance of QDF. However, the improvements are also dependent on
two critical parameters β and γ. In short, all of the above-mentioned
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methods need empirical settings of parameters to achieve the best
results, which are however both time-consuming and task-dependent
in real applications.

Different from the above approaches, in this paper, we present
a novel method, called the graphical lasso quadratic discriminant
function (GLQDF). By engaging the graphical lasso, the covariance
estimation of the ordinal QDF can be successfully conducted even
when the number of training samples is very small. Moreover, we
can estimate the inverse of the covariance directly and hence avoid
singular problems involved in QDF. One appealing feature is that
the whole process is parameter-insensitive. This presents one big
advantage over the other methods.

The rest of the paper is organized as follows. In the next
section, we make an overview of QDF and MQDF. In Section 3, we
introduce our novel GLQDF in detail. In Section 4, we conduct a
series of experiments to verify our method. Finally, we set out
concluding remarks in Section 5.

2. Review of QDF and MQDF

In this section, we review the QDF and the MQDF and also
present some basic notations used throughout the paper.

2.1. Quadratic discriminant function

In this section we briefly review the algorithm of QDF. Let
x¼ ðx1;…; xdÞT represent a feature of a pattern, the posteriori
probability can be computed by the Bayes rule:

PðωijxÞ ¼
PðωiÞpðxjωiÞ

pðxÞ ; i¼ 1;…;M ð1Þ

where PðωiÞ is the prior probability of class ωi, pðxjωiÞ is the class
probability density function (pdf) and p(x) is the mixture density
function. Since p(x) is independent of class label, the nominator of
Eq. (1) can be used as the discriminant function for classification:

gðxjωiÞ ¼ pðωiÞpðxjωiÞ: ð2Þ
Assume the pdf of each class is multivariate Gaussian:

pðxÞ ¼ 1

ð2πÞd=2jΣj1=2
exp �1

2
ðx�uÞtΣ�1ðx�uÞ

� �
; ð3Þ

where x is a d-component vector, μ is the mean vector, and Σ is
the d� d covariance matrix. The quadratic discriminant function is
derived from Eq. (3) as follows:

gðxjωiÞ ¼ ðx�μiÞtΣ �1
i ðx�μiÞþ log jΣ ij: ð4Þ

The QDF is actually a distance metric in the sense that the class of
minimum distance is assigned to the input pattern.

By K–L transform, the covariance matrix can be diagonalized as

Σ ¼ΦΛΦT ð5Þ
where Λ¼ diag½λ1;…; λd� with λi; i¼ 1;…; d, being the eigenvalues
(in decreasing order) of Λ, and Φ¼ ½ϕ1;…;ϕd� with ϕi; i¼ 1;…; d,
being the ordered eigenvectors.

Thus the QDF can be rewritten in the form of eigenvectors and
eigenvalues:

gðxjωiÞ ¼ ½ΦT
i ðx�μiÞ�TΛ�1

i ΦT
i ðx�μiÞþ log jΛij

¼ ∑
d

j ¼ 1

ððx�μiÞtφijÞ2
λij

þ ∑
d

j ¼ 1
log λij: ð6Þ

This function will lead to the optimal classifier, provided that
(1) the actual distribution is normal, (2) the prior probabilities of
all categories are equal and (3) the parameters μ and Σ can be
reliably provided. However, since the parameters are usually
unknown, the sample mean vector μ̂ and sample covariance

matrix Σ̂ are used

ĝðxjωiÞ ¼ ½Φ̂T
i ðx� μ̂ iÞ�T Λ̂

�1
i Φ̂

T
i ðx� μ̂ iÞþ log jΛ̂ ij

¼ ∑
d

j ¼ 1

ððx� μ̂ iÞtφ̂ ijÞ2

λ̂ ij

þ ∑
d

j ¼ 1
log λ̂ ij; ð7Þ

here λij is the i-th eigenvalue of Σ̂ i and φ̂ i is the eigenvector. It is
well-known that small eigenvalues in Eq. (7) are usually inaccu-
rate; this hence causes the reduction of recognition accuracy.
Moreover, the computational cost of Eq. (7) is Oðd3Þ for d-dimen-
sional vectors, which may be computationally difficult when the
dimension is high.

2.2. Modified quadratic discriminant function

MQDF is a modified version of the ordinary QDF. QDF suffers
from the quadratic number of parameters, which cannot be
estimated reliably when the number of samples per class is
smaller than the feature dimensionality. MQDF reduces the com-
plexity of QDF by replacing the small eigenvalues of covariance
matrix of each class with a constant. Consequently, the small
eigenvectors will disappear in the discriminant function. This
reduces both the space and the computational complexity. More
importantly, this small change proves to improve the classification
performance significantly. Denote the input sample by a d-dimen-
sional feature vector x¼ ðx1; x2; x3;…; xdÞT . For classification, each
class ci is assumed to have a Gaussian density pðxjciÞ ¼Nðui;siÞ,
where μi and si are the class mean and covariance matrix,
respectively. Assuming equal a priori class probabilities, the dis-
criminant function is given by the log-likelihood

�2 log pðxjωiÞ ¼ ðx�μiÞTΣ �1
i ðx�μiÞþ log jΣ ijþCI ð8Þ

where CI is a class-independent term, and is usually omitted. We take
the minus log-likelihood to make the discriminant function a distance
measure. The covariance matrix Σi can be diagonalized as Λi, where
Λi ¼ diag½λi1;…; λik;…; λid� has the eigenvalues of λik (in descending
order) as diagonal elements, φik is an ortho-normal matrix compris-
ing as columns the eigenvectors of λik. Replacing the minor eigenva-
lues with a constant, i.e., replacing Λi with diag ½λi1;…; λik; δi;…; δi� (k
is the number of principal eigenvectors to be retained), the discrimi-
nant function of Eq. (7) becomes what we call MQDF:

gðxjωiÞ ¼ ∑
k

j ¼ 1

ððx�μiÞtφijÞ2
λij

þ ∑
k

j ¼ 1
log λij

þ 1
δi

Jx�μi J
2� ∑

k

j ¼ 1
jðx�μiÞTφijj2

 !
þðd�kÞlog δi ð9Þ

where i; j¼ 1;…; k are the principal eigenvectors of the covariance
matrix of class ωi.

By defining

riðxÞ ¼ Jx�μi J
2� ∑

k

j ¼ 1
jðx�μiÞTϕijj2 ð10Þ

where ri(x) is the residual of subspace projection, Eq. (9) can be
rewritten as

gðxjωiÞ ¼ ∑
k

j ¼ 1

ððx�μiÞtφijÞ2
λij

þ ∑
k

j ¼ 1
log λijþ

1
δi
riðxÞþðd�kÞlog δi

ð11Þ

The parameters of MQDF are estimated as follows. The mean
vector and covariance matrix of a class are estimated from the
sample data of this class. The class-dependent δi is calculated by
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