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a b s t r a c t

We have proposed a motion detection model, CA3–GU–CA1 (CGC) model, inspired by hippocampal
function. The CGC model treats edges extracted from monocular image sequences, and detects motion
of the edges on segmented 2D maps without image matching. In this paper, we propose an FPGA
implementation of the CGC model, in order to achieve low power processing toward practical use. Then,
we propose an obstacle detection algorithm using time-to-collision (TTC) based edge grouping. We have
evaluated the performance of motion and obstacle detection by using artificial and real image sequences.
The results show that the CGC model can achieve high detection rate in complicated situations, and can
achieve accurate detection when using a high frame-rate. The proposed obstacle-detection algorithm can
detect dangerous objects moving across based on a novel TTC estimation algorithm. Both motion detection
and obstacle detection parts can operate at more than 1000 fps. The CGC model can also operate with a
power dissipation of about 1.4 W based on the FPGA implementation.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Motion detection is one of the key issues in collision warning
systems for vehicles or mobile robots. There is much prior research
that works by analyzing two-dimensional image motion, which is
known as optical flow fields [1,2]. Among these, gradient models
and block matching models have been popular and have been
implemented in OpenCV [3]. However, these still have problems to
improve the detection accuracy as well as to reduce the computa-
tional cost.

In our research, we aim to propose a collision warning system
that can operate in high speed and with low computational cost.
We have proposed such a system inspired by the neuronal propaga-
tion in the hippocampus in the brain [4]. The system treats edges
extracted from monocular image sequences, and detects motion of
the edges without image matching by using a so-called CA3–CA1
model [5,6]. Here, CA3 and CA1 are the names of hippocampal
regions. We used this CA3–CA1 model to detect moving edges as
spatiotemporal patterns, which are essential to the fuzzy-based
danger evaluation in our system [4].

Because this CA3–CA1 model has a trouble with motion detec-
tion in complicated situations, we have proposed an improved
model by introducing Gating Units (GUs) to solve the problem [7,8].
The proposed model is called CA3–GU–CA1 (CGC) model hereafter.

In this paper, we propose an FPGA implementation of the CGC
model, in order to achieve low power processing toward practical
use. Then, we propose an obstacle detection algorithm using time-
to-collision (TTC) based edge grouping.

This paper is organized as follows. Section 2 introduce the
concept of proposal. Section 3 describes the CGC model. Section 4
evaluates the performance of the CGC model by using artificial and
real image sequences. Section 5 proposes an FPGA implementation
of the CGC model for high-speed and low-power processing.
Section 6 proposes an obstacle detection algorithm using time-
to-collision (TTC) based edge grouping. Section 7 presents our
conclusion.

2. Brief overview

If we denote the lens focal length, the pixel and world coor-
dinates of objects by f, (i,j) and ðX;Y ; ZÞ, respectively, we can find
the following equations:

i¼ f
X
Z
; j¼ f

Y
Z
; ð1Þ

here the origin is on the center of the image (Fig. 1). By
differentiating these with respect to time, we obtain the following
equations:
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Note that f X¼ iZ and f Y¼ jZ, and these equations can be rewritten
as follows:

vi ¼
f
Z
vX�

i
Z
vZ ; vj ¼

f
Z
vY �

j
Z
vZ : ð3Þ

Therefore, we can detect image motion (vi and vj) and use Eq. (3)
to estimate the velocities of objects in real world (vX, vY, vZ).

Time-to-collision (TTC), is defined as the time that is left until a
collision occurs if an obstacle moves at a constant relative velocity
[9,10]. TTC is an important indicator for danger evaluation, and can
be calculated by �Z=vZ . Here, the minus sign means that TTC has a
valid value only when vZ is negative; i.e., objects are approaching.
It is possible to use Eq. (3) to estimate TTC if we can eliminate vX
and vY.

Because relatively stationary objects and those moving away
are not dangerous, we use TTC to detect only approaching objects
to reduce the computational complexity. Also, using TTC can make
the best use of the CGC model. The CGC model detect some extra
motion because it does not perform image matching. Using TTC
can filter out these extra results of motion detection because the
probability that these results have valid TTC value is very low.

3. CGC model for motion detection

The CA3–GU–CA1 (CGC) model proposed was inspired by the
neuronal propagation in the hippocampus. The hippocampal
formation consists of two principal regions: the dentate gyrus
(DG) and the cornu ammonis (CA), where CA are usually divided
into CA1, CA2 and CA3 by the anatomical difference. It has
been clarified that the neuronal propagation in the pathway DG–
CA3–CA1 contributes to the memory function [11]. This kind of
propagation may preserve some information for a while as a
spatiotemporal pattern, and may contribute to sequence coding
[5,12].

According to physiological knowledge [13,14], CA2 neurons
receive inputs in parallel with DG, and send inhibitory signals to
CA1 neurons. Other research [15,16] indicated that the propaga-
tion between CA3 and CA1 is in two pathways: one is fast
propagation in a CA3–CA1 pathway and the other is slow propa-
gation in a CA3–CA2–CA1 pathway where CA2 neuron functions as
a gate. We took some hints from these knowledge, and proposed
the CGC model to treat monocular image sequences.

3.1. Model structure

The proposed model is shown in Fig. 2. In this model, four kinds
of 2D maps are employed: actual image (AC), CA3, CA1 and GU
maps, where AC map functions like DG in the hippocampus. These
maps are divided into pieces based on a specified method and a
piece of them is called a unit (of pixels). According to Eq. (3), if an
object is approaching straight (vX ¼ vY ¼ 0), the moving traces of
its edges will radiate out from the center of the image because
vi=vj ¼ i=j. However, the radial center moves off the image center if

objects have a non-zero vX or vY. The shift Δd can be calculated by
solving Eq. (3) for i when vi ¼ 0 (or for j when vj ¼ 0). We proposed
a map-division method to detect objects with a non-zero vX or vY.
The details are described in a previous work [8].

The AC and CA3 maps are divided into two submaps with
different map-divisions for motion detection in vertical and horizon-
tal directions in the image plane, respectively. Each CA3 submap is
related to two corresponding CA1 submaps that detect motion of
edges in opposite directions, i.e. upward and downward or leftward
and rightward.

Each AC unit has a receptive field (RF) as shown by the dotted
line in the edge image in Fig. 2. If edges exist in a receptive field,
the corresponding AC unit is activated, which is also referred to as
“firing”. This AC unit activity is propagated to the CA3–GU–CA1
network for motion detection. Each CA1 unit has a value that
can decay linearly with time. We use the decay of CA1 value to
measure the time that an edge takes to move from a unit to
the neighboring one, which is called travel time in this paper.
We calculate the velocity by using this travel time because the
distance between two neighboring units is predefined.

GU is introduced into the model inspired by the function of
CA2. The pathways of unit-activity propagation are shown by the
arrows in Fig. 2, and the details of unit connection are shown in
Fig. 3, where n indicates the spatial index of the units in one
dimension. Each GU receives an excitatory input from the corre-
sponding CA3 unit and an inhibitory input from the backward
neighboring AC unit, which means that GUn receives an inhibitory
input from ACn�1. Each GU sends an inhibitory input to the
corresponding CA1 unit. The value of AC and GU is binary. CA3
has either a strong firing value (S) higher than the AC value or a
weak firing value (W) lower than that.

Fig. 1. Coordinate system.

Fig. 2. Proposed motion detection model.

Fig. 3. Unit connection for rightward detection.
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