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a b s t r a c t

The smoothing-type algorithm has been successfully applied to solve various optimization problems. In
this paper, we propose an inexact smoothing-type algorithm for solving the generalized support vector
machines based on a new class of smoothing functions. In general, the smoothing-type method is
designed based on some monotone line search and solving a linear system of equations exactly at each
iteration. However, for the large-scale problems, solving the linear system of equations exactly can be
very expensive. In order to overcome these drawbacks, solving the linear system of equations inexactly
and the non-monotone line search technique are used in our smoothing-type method. We show that the
proposed algorithm is globally and locally superlinearly convergent under suitable assumptions.
Preliminary numerical results are also reported.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Support Vector Machines (SVMs) have been proved to be a
successful learning machine in the literature, especially for classi-
fication. The SVM is based on statistical learning theory developed
by Vapnik [29,30] and has demonstrated outstanding performance
in many applications.

We consider the problem of classifying m points in the n-
dimensional real space Rn, represented by m�n matrix A, accord-
ing to membership of each point Ai in the class þ1 or �1 as
specified by a given m�m diagonal matrix D with ones or minus
ones along its diagonal. The linear support vector machine
attempts to separate these finite points with a hyperplane such
that the separation margin is maximized. We aim at determining a
hyperplane Hðw; bÞ ¼ fxjwTx¼ bg, where wARn\f0g and bAR,
which separates the two classes of points.

For the problem considered above, from [16,4] an optimization
model to maximize the separation can be expressed as

min
w;b

1
2 JwJ2

s:t: DðAw�beÞZe; ð1:1Þ

where e¼ ð1;…;1ÞT ARn.

The optimization model (1.1) is called maximum hard-margin
method, it requires the perfect separation. However, in most cases
such hyperplane may not exist. In other words, some training
points that do not satisfy constraints in (1.1) may be allowed to
exist. In this case, we introduce a slack vector ξ¼ ðξ1;…; ξnÞT to
represent violations of constraints in (1.1), i.e.,

ξ≔maxf0; e�DðAw�beÞg:

The corresponding optimization model can be written as

min
w;b;ξ

1
2 JξJ

2

s:t: DðAw�beÞþξZe;

ξZ0; ð1:2Þ

where the 2-norm of the misclassification error is minimized.
Other norms are also used for the misclassification error, which
lead to other problem formulations. When the 2-norm is used, the
constraint of ξZ0 becomes so unnecessary that is dropped from
the subsequent discussions.

Thus, combining (1.1) with (1.2) and using a parameter ν40
that trades off the two competing goals, maximizing the separation
margin and minimizing the misclassification error. The resulting
optimization model, called a soft-margin support vector machine, is

min
w;b;ξ

1
2
JwJ2þ ν

2
JξJ2

s:t: DðAw�beÞþξZe: ð1:3Þ

It is obvious that (1.3) is a convex quadratic programming with
respect to the variables ðw; b; ξÞ.
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From [32,17], the Lagrange dual of (1.3) is

min
x

1
2
xTDAATDxþ 1

2ν
xTx�eTx

s:t: eTDx¼ 0;
xZ0; ð1:4Þ

It is not difficult to see that (1.4) is a strictly convex quadratic
programming with ν40.

2. Support vector machines with non-linear kernel

In [18,15], a non-linear separating surface was generated by
using a completely arbitrary kernel. So we can obtain the general-
ized support vector machine by applying a general kernel KðA;AT Þ
on model (1.3):

min
u;b;ξ

f ðuÞþ ν

2
JξJ2

s:t: DðKðA;AT ÞDu�beÞþξZe; ð2:1Þ
where f is some convex function in Rm. The corresponding non-
linear separating surface is

KðxT ;AT ÞDu¼ b; ð2:2Þ
and the corresponding dual is expressed as

min
x

1
2 x

TDKðA;AT ÞDxþ 1
2ν x

Tx�eTx

s:t: eTDx¼ 0;
xZ0: ð2:3Þ

Actually, if we let KðxT ;AT Þ ¼ xTAT ;w¼ ATDu, then (2.2) reduces
to wTx¼ b. Furthermore, if we set f ðuÞ ¼ 1

2u
TDAATDu and

KðA;AT Þ ¼ AAT , then (2.1) becomes (1.3) and (2.7) reduces (1.4).
Various numerical optimization methods for solving SVMs have

been proposed in the literature, such as, the interior point method
[3,31], semismooth method [4], smoothing method [15], the active-
set method [20] and so on. The smoothing-type method we will
propose can be roughly described as follows: by introducing a new
class of smoothing functions, the model (2.3) considered are
reformulated as a system of smoothing equations, and hence can
be solved by some classical Newton type methods at each iteration
and make the smoothing parameter orderly tend to zero as the
iteration is going on so that a solution of the original problem can
be obtained. In this kind of algorithm, the initial point and the
intermediate iteration points are not required to stay in the
positive orthant, which is an outstanding difference of this kind
of method from interior point algorithms. The smoothing reformu-
lation system can be solved without a sophisticated solver.

The paper is organized as follows. In Section 3, the model (2.3)
is reformulated as a system of smoothing equations based a new
smoothing reformulation. In Section 4, we propose a general
framework of a new smoothing-type algorithm and show that
the proposed smoothing-type algorithm is well defined and gives
some useful properties of algorithm. In Section 5, we prove the
boundedness of the iteration sequence, and then discuss the
convergence behavior of the proposed smoothing-type algorithm.
Numerical results are reported in Section 6. Some final remarks are
given in Section 7.

In our notation, all vectors are column vectors, the subscript T
denotes transpose, Rn denotes the space of n dimensional real
column vectors, and Rn

þ (respectively, Rn
þ þ ) denotes the non-

negative (respectively, positive) orthant in Rn. We use “≔” to mean
“define” and denote I≔f1;2;…;ng. For any vector u, we denote by
ui the ith component of u. A column vector of ones of appropriate
dimension will be denoted by e . We denote by JuJ the 2-norm of
u. For any vectors u; vARn, we write ðuT ; vT ÞT as (u, v) for simplicity.
We denote by Rm�n the space of m�n real matrices. For AARm�n,

Ai denotes the ith row of A which is a row vector in Rn. We use N to
denote the set of all non-negative integers, i.e., N≔f0;1;2;…;g. For
any vector uARn, we also use vec fui : iAIg to denote the vector u,
and use diag fui : iAIg to denote the diagonal matrix whose ith
diagonal element is ui. For any α; βARþ , α¼ OðβÞ (or α¼ oðβÞ)
means lim supβ-0α=βoþ1 (or lim supβ-0α=β¼ 0). Let kZ0
denote the iteration index. For any ðμ; x; y; γÞ; ðμk; xk; yk; γkÞA
R1þmþmþ1, we always use the following notation throughout this
paper:

z≔ðμ; x; y; γÞ; w≔ðx; γÞ; v≔ðx; y; γÞ; z≔ðμ; vÞ;
zk≔ðμk; xk; yk; γkÞ; wk≔ðxk; γkÞ;
vk≔ðxk; yk; γkÞ; zk≔ðμk; vkÞ:

3. Smoothing reformulation based on a new family of
smoothing function

The KKT conditions for (2.3) are the following system:

xZ0;
1
ν
IþDKðA;AT ÞD

� �
x�Deγ�eZ0;

xT
1
ν
IþDKðA;AT ÞD

� �
x�Deγ�e

� �
¼ 0;

eTDx¼ 0; ð3:1Þ
where γ is Lagrange multiplier corresponding to the equality
constraint eTDx¼ 0.

Let y¼ ð1=νIþDKðA;AT ÞDÞx�Deγ�e, the system (3.1) can be
equivalently transformed into the following equation system:

xZ0; yZ0; and xTy¼ 0;

eTDx¼ 0: ð3:2Þ
It is not difficult to see that (3.2) is a mixed complementarity
problem. Furthermore, the first row of (3.2) are called comple-
mentarity condition. From [5] we know that the complementarity
conditions can be replaced by an equation with one NCP-function.
The following functions are commonly used NCP-functions:

ϕFBða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2

q
�a�b¼ 0⟺aZ0; bZ0; ab¼ 0;

ϕminða;bÞ ¼minða; bÞ ¼ 0⟺aZ0; bZ0; ab¼ 0:

Thus, by reformulation of NCP-functions(in short for ϕFB=min),
system (3.2) is equivalent to the following non-smooth equations:

Fðx; y; γÞ≔
y�ð1νIþDKðA;AT ÞDÞxþDeγþe

Φðx; yÞ
eTDx

2
64

3
75¼ 0; ð3:3Þ

where Φðx; yÞ≔ðϕFB=minðx1; y1Þ;…;ϕFB=minðxm; ymÞÞT . Since the func-
tion F is not differentiable, some classical iterative methods such as
Newton-type methods cannot be directly applied to solve system
(3.3). In order to overcome these drawbacks, what we want to do is
to make system (3.3) smooth before we can use some classical
Newton-type methods. Based on this idea above, in this paper, we
propose a new smoothing-type algorithm for solving this SVM,
which is one of Newton-type methods.

It is evident that smoothing functions play a very important role
in the smoothing-type algorithms. Many smoothing functions have
been proposed in the literature. Throughout this paper, we intro-
duce a new class of smoothing functions with one-parameter:

ϕθðμ; a; bÞ ¼ ½μaþð1þθμÞb�þ½ð1þθμÞaþμb�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þθμ�μÞ2ða�bÞ2þ4μ2

q
; ð3:4Þ

for any ðμ; a; bÞAR3, where θZ0 is a finite number. Fig. 1 intuitively
illustrates (3.4) with θ¼ 0:5; μ¼ 0:1 in both two-dimensional and
three-dimensional ways. The new class of smoothing functions
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