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a b s t r a c t

Supervised distance metric learning plays a substantial role to the success of statistical classification and
information retrieval. Although many related algorithms are proposed, it is still an open problem about
incorporating both the geometric information (i.e., locality) and the label information (i.e., globality) in
metric learning. In this paper, we propose a novel metric learning framework, called “Dependence
Maximization based Metric Learning” (DMML), which can efficiently integrate these two sources of
information into a unified structure as instances of convex programming without requiring balance
weights. In DMML, the metric is trained by maximizing the dependence between data distributions in
the reproducing kernel Hilbert spaces (RKHSs). Unlike learning in the existing information theoretic
algorithms, however, DMML requires no estimation or assumption of data distributions. Under this
proposed framework, we present two methods by employing different independence criteria respec-
tively, i.e., Hilbert–Schmidt Independence Criterion and the generalized Distance Covariance. Compre-
hensive experimental results for classification, visualization and image retrieval demonstrate that DMML
favorably outperforms state-of-the-art metric learning algorithms, meanwhile illustrate the respective
advantages of these two proposed methods in the related applications.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Distance functions are critical for many models and algorithms
in machine learning and pattern recognition, such as k-nearest
neighbor (kNN) classification and k-means clustering. The metric
distances provide a measurement of dissimilarity between differ-
ent points and significantly influence the performance of these
algorithms. Due to limited prior knowledge, most algorithms use
simple Euclidean distances. However, such distances cannot
ensure satisfactory results in many types of applications where
the intrinsic spaces of data are not Euclidean. Previous research
results [1,4,7] have shown that empirically learnt distance metrics
lead to substantial improvement to the Euclidean distances when
the prior information is not available. In addition, metric learning
has been successfully applied to a large portion of real-world
problems, including visual object categorization [34], image retrie-
val [36] and cartoon synthesis [37].

Recently, many excellent algorithms have been developed for
metric learning [2,3,5,6,21,33,35]. Among the related studies, most
effort has been spent on learning a Mahalanobis distance from
labeled training data. The Mahalanobis distances generalize stan-
dard Euclidean distances by scaling and rotating feature spaces.
After gaining a deep insight into the popular Mahalanobis distance

learning algorithms, we summarize a hierarchical diagram shown
in Fig. 1 which classifies them into different categories. For better
understanding of the significant differences between these
approaches, we initially classify them in terms of the information
they considered. One category attempts to learn distance metrics
using class labels for classification, the other category considers
both the label information (i.e., globality) and the geometric
information (i.e., locality).

1.1. Globality metric learning

Research in the first category (i.e., globality metric learning) is
driven by the need of keeping all the data points in the same class
close together for compactness while ensuring those from different
classes far apart for separability. To this end, a number of
algorithms [4–6,12,22,24] have been proposed which can be
further divided into the following subcategories as shown in Fig. 1.

(1) Algorithms based on similarity/dissimilarity: A natural inten-
tion in metric learning is to keep the points of the same label
similar (i.e., the distance between them should be relative small)
and others dissimilar (i.e., the distance should be larger). For
instance, the method proposed by Xing et al. [4] formulates a
convex metric learning program by reducing the averaged distance
between similar instances under the constraint of separating
dissimilar instances. Metric Learning by Collapsing Classes (MCML)
[5] aims to find a distance metric that collapses all the points in
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the same class while maintaining the separation between different
classes.

(2) Algorithms based on information theory: To introduce infor-
mation theory into metric learning, these algorithms define two
Gaussian distributions. The first Gaussian is based on the Maha-
lanobis distance to be learnt and the second is determined
heuristically. In this term, the distance metric can be learnt by
minimizing the relative entropy between these two distributions.
In particular, Information-Theoretic Metric Learning (ITML) [6]
defines the second Gaussian from prior knowledge and searches
the optimal metric by minimizing Kullback–Leibler (K–L) diver-
gences between them, subject to a set of similarity and dissim-
ilarity constraints. The information geometry algorithm [23] uses
an ideal kernel given from the class labels [24] to construct the
second Gaussian and also minimizes K–L divergences between
two distributions.

1.2. Globality þ locality metric learning

The previously discussed globality metric learning algorithms
have been successfully applied to various fields. In these algo-
rithms, data points are generally assumed to have unimodal
distributions. Based on this assumption, they attempt to minimize
distances between all pairs in the same class. For this reason,
however, the globality algorithms are not appropriate for multi-
modal data distributions, since their goals (i.e., compactness and
separability) conflict and can be hardly achieved simultaneously
[17]. To alleviate this problem, it is expected to incorporate the
geometric information (i.e., locality) with the label information
(i.e., globality) in metric learning. This issue is of particular
importance and has got significant progress recently [15–20]. As
an empirical validation, we compare two globality methods (i.e.,
Xing et al. [4] and Globerson and Roweis [5]) with a globality þ
locality method (i.e., Weinberger et al. [16]) on a synthetic 2-D
data set. The 2-D data set has two classes and each class has
distinct modes. From their results shown in Fig. 2, it is clear that
the globality methods [4,5] actually increase the 3-NN classifica-
tion error, since they focus on minimizing all the pairwise
distances between similarly labeled data points. Even worse, [5]
collapses the entire data set into a straight line. By contrast, [16]

reduces the error rate, due to the adaption to local structures.
Though this evaluation is conducted on a synthetic data set, it
shows in general the problems posed by multimodal data dis-
tributions and illustrates the advantages of considering the global
and the local information simultaneously.

In the globalityþ locality category, the fundamental challenge is
how to combine locality and globality. As concluded in Fig. 1,
typical algorithms [16,19,20] address this challenge by directly
generating balancing weight(s). These weights are involved
through two strategies: (1) combining the term of local manifold
into the objective function of globality metric learning; (2) for-
mulating the globality learning objective function subject to a set
of triplet-based constraints which state that a point should be
similar to another point but dissimilar to a third point in the
learnt metric. Particularly, Large Margin Nearest Neighbor (LMNN)
[16] learns a distance metric from the local neighborhood and is
solved by a semidefinite programming (SDP) [38] incorporating a
great number of triplet-based constraints. Hoi et al. [19] provide an
SDP to consider the topological structure of data along with
similarity and dissimilarity constraints. Zhong et al. [20] propose
a parametric manifold regularizer to the metric learning model
based on a large set of triplet-based constraints. Although the
algorithms discussed above have been extensively investigated in
the literature, they present a limitation that many different
balancing weights need to be tuned or optimized, such as slack
variables, the amount of constraints and the weight in the
objective function. The values of these balancing weights have
great influences on metric learning performance. Even worse, the
computational complexity may be increased rapidly for large-scale
and high-dimensional data, since many optimizations, e.g., the
general-purpose solver of SDP in LMNN, involve iterative proce-
dures and have to solve massive numbers of constraints in each
iteration. Therefore, it is promising to design an efficient metric
learning algorithm to address the challenges originated from
balancing weight(s). [15,17] are the researches most related to
this paper, in which a globalityþ locality distance metric is learnt
without optimizing balancing weight(s) and iteratively satisfying
constraints. Despite similar goals, our approach differs signifi-
cantly in the essential conception and optimization. Goldberger
et al. [15] propose a I prefer "Neighbourhood" since this is the title

Fig. 1. Hierarchical diagram of classifying studies in supervised Mahalanobis distance learning.

Fig. 2. The multimodal data distributions (a) without projection, adjusted by (b) globality method [4], (c) globality method [5] and (d) globalityþ locality method [16].
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