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a b s t r a c t

Advances of modern science and engineering lead to unprecedented amount of data for information
processing. Of particular interest is the semi-supervised learning, where very few training samples are
available among large volumes of unlabeled data. Graph-based algorithms using Laplacian regularization
have achieved state-of-the-art performance, but can induce huge memory and computational costs. In
this paper, we introduce L1-norm penalization on the low-rank factorized kernel for efficient, globally
optimal model selection in graph-based semi-supervised learning. An important novelty is that our
formulation can be transformed to a standard LASSO regression. On one hand, this makes it possible to
employ advanced sparse solvers to handle large scale problems; on the other hand, a globally optimal
subset of basis can be chosen adaptively given desired strength of penalizing model complexity, in
contrast to some current endeavors that pre-determine the basis without coupling it with the learning
task. Our algorithm performs competitively with state-of-the-art algorithms on a variety of benchmark
data sets. In particular, it is orders of magnitude faster than exact algorithms and achieves a good trade-
off between accuracy and scalability.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Advances of modern science and engineering in various
domains have created unprecedented amount of data for informa-
tion processing. Of particular interest is the semi-supervised
learning scenario, where very few training labels are available
due to the high cost of human interventions. How to utilize
unlabeled data together with a small amount of labeled examples
to boost learning performance while guaranteeing the algorithm
efficiency has been a continued research interest. Enormous
efforts have been devoted to semi-supervised learning, including
transductive SVM [6,13], cotraining [3], label propagation [34],
graph-based methods [1,20,36], semi-supervised kernel learning
[4,7,15]. See a detailed survey in [35].

In this paper, we focus on a graph-based algorithm for semi-
supervised learning. Assume that we use a positive semi-definite
(PSD) kernel function κð�; �Þ, and the n�n kernel/similarity matrix
K such that Kij ¼ κðxi; xjÞ. Define the graph Laplacian matrix
as L¼D�K , where DARn�n is a (diagonal) degree matrix such
that Dii ¼∑n

j ¼ 1Kij. The normalized graph Laplacian is defined
as ~L ¼ I�D�1=2KD�1=2, where I is the identity matrix of proper
size. The (normalized) graph Laplacian matrix imposes important

smoothness constraints. To see this, suppose a prediction function
f ð�Þ is evaluated on fxigni ¼ 1, and the prediction is represented as
fARn�1 where f i ¼ f ðxiÞ. Then the smoothness of f with regard to
the graph is given by [1,37]

∑
n

i;j ¼ 1

f iffiffiffiffiffiffi
Dii

p � f jffiffiffiffiffiffi
Djj

p
 !2

Kij ¼ f′ ~Lf;

whose minimization is called the Laplacian regularization. It
enforces a geometric, data-dependent constraint that the predic-
tion should be sufficiently smooth with regard to the manifold
structure of the data. Suppose that we are given a set of labeled
data fxigli ¼ 1 and a large amount of unlabeled data fxigni ¼ lþ1, where
u¼ n� l. By using a loss function Vðy; f ðxÞÞ, Laplacian regularized
semi-supervised learning can be formulated as [1]

min
f

∑
l

i ¼ 1
Vðyi; f ðxiÞÞþγA‖f ‖

2
K þγI

1
n2 f′Lf ð1Þ

here ‖f‖K is the Reproducing Kernel Hilbert Space (RKHS) norm of
the prediction function, γA is the associated regularization para-
meter, and γI is the regularization parameter for the Laplacian
smoothness term. The minimizer of this optimization problem
admits the expansion form:

f nðxÞ ¼ ∑
lþu

i ¼ 1
αiKðxi; xÞ; ð2Þ
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where αi's are the kernel expansion coefficients. Eq. (2) is called
the representer theorem [1].

The Laplacian regularization has been proven as an effective
way for semi-supervised learning [1,36]. One practical concern,
however, is the need to manipulate the n�n kernel matrix which
is the computational bottleneck. On the other hand, as the
representer theorem (2) shows, the decision function is potentially
spanned by all the labeled and unlabeled samples, leading to a
dense model and slow testing.

Various attempts have been made to alleviate the computa-
tional cost of graph-based semi-supervised learning. One direction
is to use low-rank approximation to scale up the optimization
[10–12,26]. These algorithms are typically transductive, and the
low-rank approximation does not consider label information
which can be otherwise beneficial. Another direction is to span
the model by only a small set of basis vectors [18,30], which will
lead to fast training and testing. However, the selection of the basis
is independent of the learning task. Also the training time scales
quadratically with the model size, which is less efficient if a
complex model is needed for difficult tasks.

Recently, the L1-regularized linear regression, also known
as the LASSO [24], has drawn considerable interest. It achieves
simultaneous prediction and globally optimal model selection via
penalizing the L1-norm of the model coefficients. Inspired by it,
we apply the L1-norm penalization on the expansion coefficients
of the low-rank factorized kernel in graph-based semi-supervised
learning. To the best of our knowledge, applying the L1-penaliza-
tion with the low-rank kernel decomposition for semi-supervised
learning is new. Our formulation not only ensures effective
manifold regularization but also enjoys the globally optimal model
selection. We also propose an efficient solution by approximately
transforming our formulation to a standard LASSO, which is quite
scalable to large data. Our algorithm competes favorably with
exact, state-of-the-art algorithms such as Laplacian-RLS [1] and
local and global consistency [34], while at the same time being
orders of magnitudes faster. Compared with several fast semi-
supervised learning algorithms [8,12,30], the accuracy of our
algorithm is quite promising, though only a few times slower.
Overall, our algorithm achieves a good trade-off between accuracy
and scalability.

The rest of the paper is organized as follows. Section 2 intro-
duces the proposed algorithm. In Section 3, we discuss related
algorithms. Section 4 reports experimental results. The last section
concludes the paper.

2. Proposed method

This section details our algorithm. First, we propose the mathe-
matical formulation, i.e., L1-penalization on low-rank kernel
expansion in Laplacian-Regularized Least-Squares (Section 2.1).
The resultant, sparse QP problem can be expensive to compute.
So we propose to apply the Nyström low-rank approximation to
the kernel matrix (Section 2.2), which allows us to transform the
sparse QP to a standard LASSO (Section 2.3) that can be solved very
efficiently.

2.1. L1-penalization of Laplacian-regularized least squares

Given a set of training data fxigli ¼ 1 and unlabeled data fxigni ¼ lþ1,
we can obtain kernel matrix K, degree matrix D, the graph Laplacian
L and normalized graph Laplacian ~L as in the previous section. For
notational simplicity, we define KlARl�n as the rows in the kernel
matrix corresponding to the labeled samples. Note that this can also
be written as Kl ¼ elK where el ¼ ½Il�l 0l�u�.

By using (2), we assume that the classifier is spanned by all the
labeled and unlabeled samples, i.e., f ¼ Kα, where αARn�1 is the
kernel expansion coefficient.1 We also require the model coeffi-
cients to be reasonably sparse considering the training and testing
speed. Therefore we use an L1-norm penalization on the model
coefficients α to control the model complexity. On the other hand,
we require that the estimated labels, Kα, to be smooth with regard
to the graph structure of the data similar to (1), and skipped the
term ‖f ‖K for simplicity. Then we have the following problem:

min
αARn�1

λ1‖Klα�y0‖2þðKαÞ′LðKαÞþλ2jαj1 ð3Þ

here y0ARl�1 is the class labels for the labeled samples. The first
term is a loss function that measures the discrepancy between the
true and estimated labels on the labeled samples (xl). The second
term enforces the smoothness constraint of Kα. The third term
jαj1 ¼∑ijαij is a regularization term, which encourages zero
entries in the model coefficients α, thereby improving the effi-
ciency of the testing phase.

The objective function (3) can be written equivalently as

min
αARn�1

α′Qα�2c′αþλ2jαj1

where Q ¼ K′LKþλ1K′e′lelK

c¼ K ′
ly0 ð4Þ

Formulation (4) is a quadratic programming problemwith a sparsity
constraint, which can be solved in different ways. For example, it can
be re-formulated as a standard QP by decomposing αi's as the
difference of two non-negative terms ai and bi, which gives a
standard QP with 2n variables with 2n non-negative constraints,
and typically has a polynomial time complexity which is expensive
for large n. Another possibility is to resort to an existing optimization
technique like the alternating direction method [29]. This can
provide exact optimal solution for (4).

In this paper, we are interested in obtaining an approximate,
computationally more efficient solution of (4). An interesting
observation here is that by fully exploiting the low-rank structure
of the kernel matrix, problem (4) can be transformed to a standard
LASSO regression, which can then be solved extremely efficiently
due to the availability of various sparse solvers.

2.2. Low-rank approximation in semi-supervised setting

Low-rank matrix approximation is a useful tool for handling
large matrices and reducing the dimensionality. Besides, it also has
applications in dynamic systems [9,21]. In this paper, we are
interested in the low-rank approximation of symmetric, positive
semi-definite matrices (such as the kernel matrix) KARn�n in the
form of

K � GG′; GARn�m; m5n ð5Þ
here GG′ is called the rank-m approximation of K. It has been found
that in many learning problems, the kernel matrix typically has
a fast decaying spectrum [27], justifying the use of the low-rank
approximation technique in reducing the memory and computa-
tional cost. The optimal rank-m approximation is provided by
the eigenvalue decomposition, which can be very expensive. So
we will resort to a popular, sampling-based method called the
Nyström method [11,10,26,31]. For an n�n kernel matrix, the
Nyström method chooses a subset of m rows/columns KnmARn�m,
compute an m�m eigenvalue decomposition on the intersection
of selected rows and columns KmmARm�m, and then approximate

1 In the case of multiple c classes, αARn�c , which is a simple extension of the
binary class formulation.
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