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a b s t r a c t

We introduce a new algorithm for distance metric learning which uses pairwise similarity (equivalence)
and dissimilarity constraints. The method is adapted to the high-dimensional feature spaces that occur in
many computer vision applications. It first projects the data onto the subspace orthogonal to the linear
span of the difference vectors of similar sample pairs. Similar samples thus have identical projections, i.e.,
the distance between the two elements of each similar sample pair becomes zero in the projected space.
In the projected space we find a linear embedding that maximizes the scatter of the dissimilar sample
pairs. This corresponds to a pseudo-metric characterized by a positive semi-definite matrix in the
original input space. We also kernelize the method and show that this allows it to handle cases with low-
dimensional input spaces and large numbers of similarity constraints. Despite the method's simplicity,
experiments on synthetic problems and on real-world image retrieval, visual object classification, gender
classification and image segmentation ones demonstrate its effectiveness, yielding significant improve-
ments over the existing distance metric learning methods.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In a wide range of computer vision problems, including object
classification, segmentation and image and video retrieval, the
performance depends critically on the similarity metric used to
compare examples, so it is important to develop effective methods
for learning distance metrics for such applications [1–5]. Measur-
ing distances is comparatively simple when the features used are
hand-chosen to be independent and highly relevant, but in
computer vision applications with modern feature sets there are
typically a great many features, many of which are either highly
correlated with other features or irrelevant for the task being
considered. This happens because at present, despite their redun-
dancy, large and comparatively generic modern feature sets
typically give better performance than smaller hand-chosen ones,
and because vision problems are often somewhat open with the
most relevant features depending on the exact problem and
dataset being considered. (For example, when organizing image
collections, it is possible to group images in many different ways,
based on objects that they contain, natural versus built, outdoors
versus indoors, etc.) When there are irrelevant and/or correlated
features, similarity judgments based on Euclidean feature space

distances often give unacceptable results, so it is necessary to learn
more discriminative distance metrics.

In the simplest forms of distance learning, explicit class labels
are supplied for the training samples, thus establishing a global
notion of the similarity that is to be learned. However, there are
many applications in which explicit labels are not available, either
because the underlying problem does not involve classes or
involves only poorly defined ones, or owing to the high cost of
supplying a full labeling. In such cases, side information in the
form of categorical similar/dissimilar judgments linking pairs of
examples may still be available at a reasonable cost. For example
in surveillance applications such as [4], objects (e.g. faces)
extracted at roughly the same location in successive video frames
can be assumed to represent the same individual, whereas ones
extracted at different locations in the same frame must represent
different individuals. In some applications such as relevance-
feedback based image retrieval [6] or interactive semi-supervised
image segmentation [2], such similarity judgments are actually the
most natural form of supervision.

This paper focuses on distance metric learning from similarity
judgments of this kind. Our strategy is to handle the similarity
constraints first by projecting the data to a lower-dimensional
subspace in which each similar pair becomes an identical pair, and
then to address the dissimilarity constraints by finding a linear
embedding that maximizes the distances between the projected
dissimilar pairs. There are several advantages of this procedure:
Projection onto the null space is the optimal linear projection in
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the sense that it preserves the variance along the orthogonal
directions to the projection direction, hence the original distance
measure is best preserved. Moreover, as the experiments show, the
resulting method is particularly suitable for computer vision pro-
blems based on modern high-dimensional feature sets since one
does not need to approximate complex distance model parameters.

2. Related work

In recent years there has been a growing interest in methods
for learning distance metrics due to their broad applications. Some
of these approaches find the desired distance function directly,
while others find embeddings in which the Euclidean distance
serves as the new distance function. The two problems are
equivalent and we will present them interchangeably here. We
only discuss methods based on similarity judgments: ones that
require explicit class labels [7–10] will not be considered here.
A more comprehensive survey of distance metric learning techni-
ques can be found in [11].

Similarity judgment based distance learning methods modify
their input distances to accommodate the given pairwise con-
straints, and at present most of them focus on learning linear
Mahalanobis-like distances parameterized by positive-definite or
semi-definite matrices. Xing et al. [12] used a convex program-
ming formulation under equivalence constraints to learn a
full-rank Mahalanobis metric. The metric is learned via an iterative
procedure that involves projection and eigendecomposition in
each step. Tsang and Kwok [13] formulated the problem as
a quadratic optimization one. They also extend their method to
the nonlinear case using the kernel trick. Shalew-Shwartz et al.
[14] proposed a sophisticated online distance metric learning
algorithm that uses side information. The method incorporates
the large margin concept, and the distance metric is modified
based on two successive projections involving an eigendecompo-
sition. Davis et al. [15] proposed an information-theoretic
approach to learn a Mahalanobis distance function. They formu-
lated the metric learning problem as that of minimizing the
differential entropy between two multivariate Gaussians under
equivalence constraints on the distance function. Yang et al. [11]
proposed a Bayesian framework that estimates a posterior dis-
tribution for the distance metric from the pairwise constraints. All
of the above algorithms attempt to learn full-rank distance
metrics. This makes them less suitable for high-dimensional
computer vision problems, in which it is usually more effective
to learn lower-rank distance metrics or embeddings. To this end,
Cevikalp and Paredes [2] introduce a low-rank distance metric
learning algorithm based on sigmoid functions. A similar weakly
supervised method was introduced in [16]. A semi-supervised
low-rank Mahalanobis distance learning algorithm for high-
dimensional spaces using log-determinant matrix divergence
was introduced in [17]. More recently, a sparse (low-rank) metric
learning method using Nesterov's smooth optimization has been
proposed for high-dimensional data [18]. Unlike other methods,
the sparse metric learning algorithm uses relative comparisons
(given in terms of triplets) instead of pairwise equivalence con-
straints and the authors showed that it outperforms competing
methods. However, they reported results on relatively small-
dimensional datasets selected from UCI repository rather than on
challenging high-dimensional real-world datasets. Another sparse
metric learning method using alternating linearization optimiza-
tion has been proposed in [19].

Graph-based methods that incorporate pairwise side informa-
tion by modifying the weights of the graph have also been
proposed [20–23]. Their major limitation is that they assume that
local nearest-neighbor samples typically have the same class label

(c.f. local neighborhood-based nonlinear dimensionality reduction
methods in which each class is modeled as a manifold that is
locally close to linear). This is only true if the classes are sampled
densely relative to the inter-class spacing, which is hard to achieve
with feasible training set sizes in high dimensional problems with
difficult-to-distinguish classes. As a result, the graph-based
approaches tend to perform poorly in practical vision problems
because the constraints that they assume become too noisy. To
alleviate this problem, some authors [24,6] use multiple graphs
which operate on different feature sets. Then, they learn more
reliable distance metrics by fusing those graphs with different
techniques.

A method that is more closely related to ours is relevant
components analysis (RCA) [25]. It searches for an embedding
that assigns large weights to the most relevant dimensions and
lower weights to less relevant ones, where relevance is estimated
using the pairwise similarity constraints. RCA does not incorporate
dissimilarity constraints and it is restricted to learning linear
transformations in the original input space. Tsang et al. [26]
improved RCA and kernelized it. Hoi et al. [5] proposed discrimi-
native components analysis (DCA), a method that allows dissim-
ilarity constraints to be incorporated into RCA and Kernel RCA. Our
approach is similar in spirit to DCA, but it overcomes a serious
drawback of DCA (see Section 2.3).

Finally, there are some hybrid methods that unify clustering
and metric learning into a common framework based on side
information [27,28]. Among these, [28] is worth mentioning
because it projects onto the null space of the similarity constraints
as we do.

2.1. Metric learning under side constraints

Before presenting our method in its linear and kernelized
forms, we summarize the setting for distance metric learning
under side constraints and sketch the RCA and DCA approaches.

Let xiARd, i¼ 1;…;N, denote the samples of the training set.
We are given a set of side constraints in the form of similar and
dissimilar pairs and we aim to find a pseudo-metric that reflects
the underlying relationships imposed by them. We focus on
pseudo-metrics of the form

dAðxi; xjÞ ¼ Jxi�xj JA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xjÞ>Aðxi�xjÞ

q
; ð1Þ

where AZ0 is a symmetric positive semi-definite matrix. Equiva-
lently, if q¼ RankðAÞrd, A can be written in the form A¼WW>

where W is a full-rank rectangular matrix of size d� q, so that

Jxi�xj J2A ¼ JW>xi�W>xj J2; ð2Þ

i.e. distances between points under the metric A are equivalent to
Euclidean distances on their linear projections by W> .

2.2. Relevant component analysis (RCA)

The basic strategy of RCA is to identify irrelevant dimensions
and reduce their effects by assigning lower weights to them. RCA
does not exploit dissimilarity information. Similarity information
is provided in the form of “chunklets”: groups of two or more data
samples that are considered “similar” (e.g. that belong to the same
class). Assume that we are given C chunklets with chunklet c
containing nc patterns fxc;1;…; xc;nc g. RCA centers each chunklet
then finds their combined covariance matrix:

S¼ 1
n

∑
C

c ¼ 1
∑
nc

i ¼ 1
ðxc;i�μcÞðxc;i�μcÞ> ; ð3Þ
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