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a b s t r a c t

This paper develops two neural network models, based on Lagrange programming neural networks
(LPNNs), for recovering sparse signals in compressive sampling. The first model is for the standard
recovery of sparse signals. The second one is for the recovery of sparse signals from noisy observations.
Their properties, including the optimality of the solutions and the convergence behavior of the networks,
are analyzed. We show that for the first case, the network converges to the global minimum of the
objective function. For the second case, the convergence is locally stable.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear constrained optimization problems have been stu-
died over several decades [1–3]. Conventional ways for solving
them are based on numerical methods [1,2]. As mentioned by
many neural network pioneers [3–7], when realtime solutions are
required, the neural circuit approach [3–5] is more effective. In
the neural circuit approach, we do not solve them in a digital
computer. Instead, we set up an associated neural circuit for the
given constrained optimization problem. After the neural circuit
settles down at one of the equilibrium points, the solution is
obtained by measuring the neuron output voltages at this stable
equilibrium point. So, one of the important issues is the stability of
equilibrium points.

In the past two decades, many results of neural circuits were
reported. For instance, Hopfield [4] investigated a neural circuit for
solving quadratic optimization problems. In [5,8–10] a number
of models were proposed to solve various nonlinear constrained
optimization problems. The neural circuit approach is able to solve
many engineering problems effectively. For example, it can be
used for optimizing microcode [11]. Besides, it is able to search the
maximum of a set of numbers [12–14]. In [15], the Lagrange
programming neural network (LPNN) model was proposed to
solve general nonlinear constrained optimization problems. For
many years, many neural models for engineering problems were
addressed. However, little attention has been paid to analog neural
circuits for compressing sampling.

In compressing sampling [16–18], a sparse signal is sampled
(measured) by a few random-like basis functions. The task of
compressing sampling is to recover the sparse signal from the
measurements. Compressive sampling can also be applied to a
non-sparse signal by increasing the sparsity of the signal. It can be
done by using some transform coding techniques. Conventional
approaches for recovering sparse signals are based on the
Newton's method [19–21].

As the neural circuit approach is a good alternative for non-
linear optimization, it is interesting to investigate the ways to
apply the neural circuit approach for compressing sampling. This
paper proposes two analog neural network models, based on
LPNNs, for compressive sampling. One is for the standard recovery.
Another one is for the recovery from noisy measurements. Since
the norm-1 measure is not twice differentiable, it is difficult to
construct a neural circuit. Hence this paper proposes an approx-
imation for the objective function. With the approximation, the
hyperbolic tangent function, which is a commonly used activation
function in the neural network community, is involved. We use
experiments to investigate how the hyperbolic tangent parameter
affects the performance of the proposed models. Since the con-
vergence and stability of neural circuits are important issues, this
paper investigates the stability and optimality of our approaches.
For the case of the standard recovery, we show that the proposed
neural model converges to the global minimum of the objective
function. For the case of the recovery from noisy measurements,
we show that the neural model is locally stable.

This paper is organized as follows. In Section 2, the backgrounds
of compressive sampling and LPNNs are reviewed. Section 3
formulates neural models for compressive sampling. The theo-
retical analysis on the proposed neural models is also presented.
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Section 4 presents our simulation results. Section 5 concludes our
results.

2. Background

2.1. Compressive sampling

In compressive sampling [16–18], we would like to find a
sparse solution xARn of an underdetermined system, given by

b¼Φx; ð1Þ
where bARm is the observation vector, ΦARm�n is the measure-
ment matrix with a rank of m, xARn is the unknown sparse vector
to be recovered, and mon. In a more precise way, the sparsest
solution is defined as

min jxj0 ð2aÞ

subject to b¼Φx: ð2bÞ
Unfortunately, problem (2) is NP-hard. Therefore, we usually
replace the l0-norm measure with the l1-norm measure. The
problem for recovering sparse signals becomes

min jxj1 ð3aÞ

subject to b¼Φx: ð3bÞ
This problem is known as basis pursuit (BP) [17,19]. Let ϕj be the j-
th column of Φ. Define the mutual coherence [18] of Φ as

μðΦÞ ¼max
ia j

jϕT
i ϕjj

jϕij2jϕjj2
: ð4Þ

If the cardinality of the true solution obeys xj0o1
2 ð1þ1=μðΦÞÞ

�� ,
then the solution of (3) is exactly the same as that of (2). When the
measurement matrix has independent Gaussian entries and the
number m of measurements is greater than 2k log ðn=kÞ, the BP
[22] can reconstruct the sparse signal with high probability.

When there is measurement noise in b, the sampling process
becomes

b¼Φxþξ; ð5Þ
where ξ¼ ½ξ1;ξ2;…; ξm�T , and ξi's are independent identical ran-
dom variables with zero mean and variance s2. In this case, our
problem becomes

min jxj1 ð6aÞ

subject to jb�Φxj2rms2: ð6bÞ

2.2. Lagrange programming neural networks

The LPNN approach aims at solving a general nonlinear con-
strained optimization problem, given by

EP : min f ðxÞ ð7aÞ

subject to hðxÞ ¼ 0; ð7bÞ
where xARn is the state of system, f : Rn-R is the objective
function, and h : Rn-Rm (mon) describes the m equality con-
straints. The two functions f and h are assumed to be twice
differentiable.

The LPNN approach first sets up a Lagrange function for EP,
given by

Lðx;λÞ ¼ f ðxÞþλThðxÞ; ð8Þ
where λ¼ ½λ1;…;λm�T is the Lagrange multiplier vector. The LPNN
approach then defines two kinds of neurons: variable neurons and
Lagrange neurons. The variable neurons hold the state variable

vector x. The Lagrange neurons hold the Lagrange multiplier
vector λ.

The LPNN approach defines two updating equations for those
neurons, given by

1
ε
dx
dt

¼ �∇xLðx;λÞ ð9aÞ

1
ε
dλ
dt

¼∇λLðx;λÞ; ð9bÞ

where ε is the time constant of the circuit. The time constant
depends on the circuit resistance and the circuit capacitance.
Without loss of generality, we set ε to 1. The variable neurons
seek for a state with the minimum cost in a system while the
Lagrange neurons are trying to constrain the system state of the
system such that the system state falls into the feasible region.
With (9), the network will settle down at a stable state [15] if the
network satisfies some conditions.

3. LPNNs for compressive sampling

3.1. Sparse signal

From (3) and (7), one may suggest that we can set up a LPNN
to solve problem (3). However, the absolute operator j � j is not
differentiable at xi¼0. Hence, we need an approximation. In this
paper, we use the following approximation:

xij j � lnðcoshðaxiÞÞ
a

; ð10Þ

where a41. Fig. 1 shows the shape of ð1=aÞlnðcoshðaxÞÞ. From the
figure, the approximation1 is quite accurate for a large a.

Thanks to the property of ð1=aÞlnðcoshðaxÞÞ, the hyperbolic
tangent function is involved in the dynamic equations of the
neural circuit. It should be noticed that the hyperbolic tangent
function [23] is the commonly used activation in the neural
network community. Also, comparators or amplifiers [24] are
associated with the hyperbolic-tangent relation between input
and output for differential bipolar pairs.
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Fig. 1. y¼ ð1=aÞlnðcoshðaxÞÞ.

1 In Section 4, we will use simulation examples to show the effectiveness of
this approximation.
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