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a b s t r a c t

In this study, approximate dynamics programming framework is utilized for solving the Bellman
equation related to the fixed-final-time optimal tracking problem of input-affine nonlinear systems.
Convergence of the weights of the neurocontroller in the proposed successive approximation based
algorithms is provided and the network is trained to provide the optimal solution to the problems with
(a) unspecified initial conditions (b) different time horizons, and (c) different reference trajectories under
certain general conditions. Numerical simulations illustrate the versatility of the proposed neurocon-
troller.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Approximate dynamics programming (ADP) has shown a lot of
promise in solving optimal control problems with neural networks
(NN) as the enabling structure [1–10]. Mechanism for ADP is
usually provided through a dual network architecture called the
Adaptive Critics (AC) [3,2]. In the heuristic dynamic programming
(HDP) class with ACs, one network, called the ‘critic’ network,
maps the input states to output the cost and another network,
called the ‘action’ network, outputs the control with states of the
system as its inputs [4,5]. In the dual heuristic programming (DHP)
formulation, while the action network remains the same as the
HDP, the critic network outputs the costates with the current
states as inputs [2,6,7]. The convergence proof of DHP for linear
systems is presented in [8] and that of HDP for general case is
presented in [4]. The Single Network Adaptive Critics (SNAC)
architecture developed in [9] is shown to be able to eliminate
the need for the second network and perform DHP using only one
network. This process results in a considerable decrease in the
offline training effort and the resulting simplicity makes it attrac-
tive for online implementation requiring less computational
resources and storage memory. Similarly, the cost function based
SNAC (J-SNAC) eliminates the need for the action network in an

HDP scheme [10]. While [2–10] deal with discrete-time systems,
some researchers have recently focused on continuous time
problems [11–13].

Note that these developments in the neural network (NN)
literature have mainly addressed only the infinite horizon or
regulator type problems. Finite-horizon optimal control is rela-
tively more difficult due to the time varying Hamilton–Jacobi–
Bellman (HJB) equation resulting in a time-to-go dependent optimal
cost function and costates. Using numerical methods [14] a two-
point boundary value problem (TPBVP) needs to be solved for each
set of initial condition for a given final time and it will provide only
an open loop solution. The control loop can be closed using
techniques like Model Predictive Control (MPC) as done in [15],
however, the result will be valid only for one set of initial
conditions and final time. This limitation holds for the method
developed in [16] also. Ref. [17] develops a dynamics optimization
scheme which gives an open-loop solution, then, optimal tracking
is used for rejecting the online perturbation and deviations from
the optimal trajectory. Authors of [18] used power series to solve
the problem with small nonlinearities, and in [19] an approxi-
mated solution is given through the so-called Finite-horizon State
Dependent Riccati Equation (Finite-SDRE) method.

Neural networks are used for solving finite-horizon optimal
control problem in [20–25]. Authors of [20] developed a neuro-
controller for a scalar problem with terminal constraint using AC.
Continuous-time problems are considered in [21] and [22] where
the time-dependent weights are calculated through a backward
integration. The finite-horizon problem with unspecified terminal
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time and a fixed terminal state is considered in [23,24]. The
neurocontroller developed in [23] can work only with one set of
initial conditions and if the initial state is changed, the network
needs to be re-trained to give the optimal solution for the new
state. This limitation holds for [24] as well.

In many practical systems one is interested in tracking a
desired signal. Examples of such systems are contour tracking in
machining processes [34–35] and control of robotic manipulators
[36]. In some systems the tracking is required to be carried out in a
given time, see [37] for an example of such a case in an autopilot
design. The constraint of final time being fixed makes the problem
very difficult to solve. Missile guidance problems and launch
vehicle problems are some other applications in this class of
problems. Solving optimal tracking problems for nonlinear sys-
tems using adaptive critics has been investigated by researchers in
[26–32]. In [26] the authors have developed a tracking controller
for the system whose input gain matrix is invertible. In [27] the
reference signal is limited to those which satisfy the dynamics of
the system. Developments in [28–31] solve the tracking problem
for the systems of nonlinear Brunovsky canonical form. Finally, the
finite-horizon tracking neurocontroller developed in [32] can
control only one set of initial conditions and requires the input
gain matrix of the dynamics to be invertible.

In this paper, a single neural network based solution, called
Finite-horizon Single Network Adaptive Critics (Finite-SNAC), is
developed which embeds an approximate solution to the discrete-
time HJB equation for fixed-final-time optimal tracking problems.
The approximation can be made as accurate as desired using rich
enough basis functions. Consequently, the offline trained network
can be used to generate online feedback control in real-time. The
neurocontroller is able to solve optimal tracking problem of
general nonlinear control-affine dynamics for tracking either a
given arbitrary trajectory or a family of trajectories which share
the same, possibly nonlinear, dynamics. Once the network is
trained, it will give optimal solution for every initial condition as
long as the resulting trajectory lies on the domain for which the
network is trained, hence, Finite-SNAC does not have the restric-
tions of some of the cited references in the field. Furthermore, a
major advantage of the proposed technique is that this network
provides optimal feedback solutions to any different final time as
long as it is less than the final time for which the network is
synthesized. An innovative proof is developed which shows the
successive approximation based training algorithm is a contraction
mapping [33].

Comparing the developed controller in this paper with the
available intelligent controllers in the literature, the closest ones
are [20,25]. As compared to [20], in this study, only one network is
needed for computing the control, and this idea has been general-
ized to tracking with free final state. Moreover, convergence proofs
are provided. The differences between this study and [25] are
(a) solving tracking problem versus the problem of brining the
states to zero in [25] (b) using time varying weights for the neural
networks as opposed to the time invariant weights in that
reference, (c) developing a ‘backward in time’ training algorithm
versus the pure ‘iterative’ algorithm in [25], and (d) providing a
completely different convergence proof in this study. The advan-
tages of the development in this study versus the available finite-
horizon optimal tracking methods in the literature [32,37] are
providing solutions for different initial conditions and different
final-times, without needing to retrain the network as in [32], or
needing to recalculate the series of differential Riccati equation till
they converge as in [37]. Moreover, the restriction of requiring an
invertible input-gain matrix in [32] does not exist here. Finally the
advantage of this study versus the MPC approach utilized in [15]
for optimal tracking is having a negligible computational load in
here versus the huge real-time computational load in MPC for

online numerical calculation of the optimal solution at each
instant, as detailed in [15]. In here, however, once the networks
are trained offline, the online calculation of the control is as simple
as a feeding the states to the network to get the costate vector and
hence, the control.

The rest of the paper is organized as follows: Finite-SNAC is
developed in section II. Relevant convergence theorems are pre-
sented in Section 3. A modified version of the controller for higher
versatility is proposed in Section 4, and the numerical results and
analyses are presented in Section 5. Finally, the conclusions are
given in Section 6.

2. Theory of Finite-SNAC

Consider the nonlinear continuous-time input-affine system

_xðtÞ ¼ f cðxðtÞÞþgcðxðtÞÞuðtÞ; ð1Þ
where xðtÞAℝn and uðtÞAℝl denote the state and the control
vectors at time t, respectively, and parameters n and l are the
dimension of the state and control vectors. Smooth functions
f c : ℝ

n-ℝn and gc : ℝ
n-ℝn�l are the system dynamics and the

initial states are given by xð0Þ. Given reference signal rðtÞAℝn for
tA ½0 tf �, where the initial time is selected as zero and the final
time is denoted by tf , the objective is selecting a control history
uðtÞ, tA ½0 tf �, such that the cost function given below is minimized.

J ¼ 1
2
ðxðtf Þ�rðtf ÞÞTSðxðtf Þ�rðtf ÞÞþ

1
2

Z tf

0
ððxðtÞ

�rðtÞÞTQcðxðtÞ�rðtÞÞþuðtÞTRcuðtÞÞdt:
Symmetric matrices SAℝn�n; QcAℝn�n and RcAℝl�l are the
penalizing matrices for the final states, states, and control vectors,
respectively. Matrices S and Qc are positive semi-definite and
matrix Rc is a positive definite matrix. Superscript T denotes
transpose operation.

In many practical applications, discretization is used since
the states are estimated and the control is calculated at discrete
times and not calculated continuously, though the description of
dynamics is continuous. The approach selected in this paper is
discretizing the problem using a small sampling time Δt to have.

xkþ1 ¼ f ðxkÞþgðxkÞuk; kAf0;1;…;N�1g; ð2Þ

J ¼ 1
2
ðxN�rNÞTSðxN�rNÞþ

1
2

∑
N�1

k ¼ 0
ððxk�rkÞTQ ðxk�rkÞþuT

kRukÞ; ð3Þ

where integer k denotes the time index, N� tf =Δt, xk � xðkΔtÞ,
uk � uðkΔtÞ, and rk � rðkΔtÞ. Using Euler integration scheme one
has f ðxkÞ � xkþΔtf cðxkÞ; gðxkÞ �ΔtgcðxkÞ, Q �ΔtQc, and R�ΔtRc .

Remark 1:. The assumption that discrete-time system (2) is
obtained through ‘discretizing’ a continuous dynamics is utilized
in convergence analysis of the developed algorithms in this paper.
Excluding systems with inherent discrete evolution, including
hybrid systems, all the physical systems are continuous; therefore,
this assumption does not impose a limitation on the results
obtained here for such systems.

The cost-to-go at each time step k and state vector xk, denoted
by Jðxk; kÞ, is equal to

Jðxk; kÞ ¼
1
2
ðxN�rNÞTSðxN�rNÞþ

1
2

∑
N�1

k ¼ k
ððxk �rk ÞTQ ðxk �rk ÞþuT

k Ruk Þ;

which leads to the recursive equation

Jðxk; kÞ ¼ 1
2 ððxk�rkÞTQ ðxk�rkÞþuT

kRukÞ
þ Jðxkþ1; kþ1Þ; kAf0;1;…;N�1g: ð4Þ
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