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This paper presents a projection neural network with discrete delays and distributed delays (i.e. mixed

delays) for solving linear variational inequality (LVI). By the Lyapunov theory and the linear matrix

inequality (LMI) approach, the neural network is proved to be globally exponentially convergent to

the solution of LVI. Compared with existing neural networks for solving LVI, the proposed one features

the ability of solving a class of non-monotone LVI. One numerical example is provided to illustrate the

effectiveness and the satisfactory performance of the neural network.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Linear variational inequality (LVI): find xnAO such that

ðMxn
þqÞT ðx�xnÞZ0, 8xAO, ð1Þ

where MARn�n, qARn, x¼ ðx1, . . . ,xnÞ
T ARn and the feasible domain

O¼ fxARn9lirxirhi,i¼ 1, . . . ,ng. LVI and nonlinear variational
inequality (in which Mxþp is replaced by a nonlinear function
FðxÞ : Rn-R) are of crucial importance in mathematical program-
ming, which have numerous applications in science and engineer-
ing [1]. During past decades, due to its inherent nature for parallel
computation and real-time applications, neural networks for sol-
ving LVI and related optimization problems have been widely
investigated [2–9]. For example, Xia et al. developed the projection
neural network to solve LVI and nonlinear variational problems
[2,3]. Hu et al. employed the projection neural network for
‘‘solving’’ pseudomonotone variational inequalities [5]. It is noted
that, most of the neural networks mentioned above are under two
stringent assumptions: (a) the LVI must be monotone or strictly
monotone, or equivalently, M is positive semidefinite or positive
definite to guarantee their convergence to the optimal solution;
(b) the neurons communicate and respond without time delays.

Time delays inevitably occur during the signal communication
among the neurons, which may lead complex dynamical behavior
of network by oscillation or instability [14–18]. In recent decade,
there has been an increasing interest in the study of employing
delayed neural networks to solve LVI (1) and related optimization
problems [10–13]. For example, in consideration of the transmis-
sion delays occurring in different parts of neural networks, Liu
et al. [10] and Yang et al. [11] proposed two kinds of DNN for
solving linear projection equations and quadratic programming
problems, respectively. Based on the neural network model in
[11], Cheng et al. presented another delayed neural network in
[12] for solving LVI problems and further extended the results to
the case of time-varying delays [13]. It should be noted that the
delays in all above-mentioned delayed neural networks are
restricted to the case of discrete delays. However, a neural
network usually has a spatial nature due to the presence of an
amount of parallel pathways of a variety axon sizes and lengths.
It is desirable to model them by introducing distributed delays.
In other words, it is often the case that the neural network model
possesses both discrete and distributed delays, i.e. mixed delays
[19]. In these years, dynamics analysis of neural networks with
mixed delays have attracted considerable research interests
[20–24]. However, to the best of the authors’ knowledge, most
results have been concentrated in the stability analysis and there
is no existing neural network with mixed delays being employed
to solve LVI or related optimization problems.

In this paper, we present a projection neural network with
mixed delays for solving LVI (1). By the Lyapunov theory, the
proposed neural network is proved to be globally exponentially
convergent to the solution of LVI (1). By the proposed LMI
approach, the positive semidefiniteness or positive definiteness
condition on M has been relaxed. As a consequence, the proposed
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neural network can also solve a class of nonmonotone LVI. Finally,
the satisfactory performance of the proposed neural network is
demonstrated by a numerical example.

2. Problem formulation and preliminaries

Notions: The superscript T denotes the transpose of a matrix or
vector. I denotes an identity matrix with compatible dimensions.

For a vector d, JdJ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1 d
2
i

q
denotes the l2-norm of d. For a

matrix V, lMðVÞ and lmðVÞ denote the maximum and the mini-

mum eigenvalue of V, respectively. JVJ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lMðV

T VÞ
q

represents

the matrix spectral norm of V. For a square matrix V, V Z0 and
V 40 means that it is positive semidefinite and positive definite
matrix, respectively.

Based on the projection theorem [1], it follows that xnAO is a
solution of the LVI defined in (1) if and only if it satisfies the
following projection equation:

x¼ PO½x�aðMxþqÞ�, ð2Þ

where a40 is a constant and PO: Rn-O is a projection operator
defined by POðxÞ ¼ ½POðx1Þ, . . . ,POðxnÞ�

T , and

POðxiÞ ¼

li, xio li,

xi, lirxirhi,

hi, xi4hi:

8><
>: ð3Þ

In view of the equivalent formulation of the LVI in (2), the
following projection neural network was developed for solving
LVI (1) in [2–4]:

dxðtÞ

dt
¼ lfPO½xðtÞ�aðMxðtÞþqÞ��xðtÞg, ð4Þ

where l40 is the scaling factor and PO is defined in (3).
Note that xn is a solution of LVI (1) if and only if it is the

equilibrium point of the above neural network. In [2–4],
the characteristics of the neural network (4) have been fully
analyzed. It was shown that, if M is symmetric and MZ0,
the neural network (2) is stable and globally convergent to the
solution of LVI (1), and if M40 the neural network (2) is
globally exponentially convergent to the solution of LVI (1). That is
to say, the neural network (2) can solve the monotone LVI problem.

Taking the time delay effect into consideration, we propose a
projection neural network with mixed delays for solving LVI (1) as
follows:

dxðtÞ

dt
¼�ð2þt2ÞxðtÞþPO½xðtÞ�aðMxðtÞþqÞ�

þxðt�t1Þþ

Z t

t�t2

xðsÞ ds, tAðt0,þ1Þ,

xðtÞ ¼fðtÞ, tA ½t0�tM ,t0�, ð5Þ

where t1Z0, t2Z0, tM ¼maxðt1,t2Þ, fðtÞACð½t0�tM ,t0�,R
n
Þ and

Cð½t0�tM ,t0�,R
n
Þ denotes the set of all continuous vector-valued

functions from ½t0�tM ,t0�. It is easy to see that xn is an equilibrium
point of (5) if and only if xn is the optimal solution of problem (1).
Consequently, the neural network (5) can be employed to solve
LVI (1).

In order to obtain the main results, a definition and two
lemmas are introduced first as follows.

Definition 1 (Lien et al. [20]). The equilibrium point xn of the
delayed projection neural network defined by (5) is said to be
globally exponentially stable with convergence rate x40 if there

exist positive constants x and g such that

JxðtÞ�xnJrg � e�xðt�t0Þ, 8tZt0:

Lemma 1 (Liu et al. [10]). The projection operator PO satisfies the

following inequality for any x,yARn:

JPOðxÞ�POðyÞJrJx�yJ

and

ðPOðxÞ�POðyÞÞ
T
ðPOðxÞ�POðyÞÞrðPOðxÞ�POðyÞÞ

T
ðx�yÞ:

Lemma 2 (Gu [25]). For any symmetric positive definite matrix

M0ARn�n, scalar r40 and vector function o : ½0,r�-Rn, such that

the integrations concerned are well defined, the following inequality

holds:

r
Z r

0
oT ðsÞM0oðsÞ ds

� �
Z

Z r

0
oðsÞ ds

� �T

M0

Z r

0
oðsÞ ds

� �
:

3. Main results

To prove the exponential convergence of the neural network
(5), we reformulate the neural network (5) as follows:

dxðtÞ

dt
¼�ð2þt2ÞxðtÞþPOðAxðtÞþbÞþxðt�t1Þþ

Z t

t�t2

xðsÞ ds, ð6Þ

where A¼ ðaijÞn�n ¼ I�aM and b¼ ðb1,b2, . . . ,bnÞ
T
¼�aq.

Then, let xn be the equilibrium point of the neural network (5)
and ai ¼ ½ai1,ai2, . . . ,ain�. By coordinate transformation uðtÞ ¼

xðtÞ�xn, we get the following system from (6):

duðtÞ

dt
¼�ð2þt2ÞuðtÞþ f ðAuðtÞÞþuðt�t1Þþ

Z t

t�t2

uðsÞ ds, ð7Þ

where f ðAuðtÞÞ ¼ ½f 1ða1uðtÞÞ,f 2ða2uðtÞÞ, . . . ,f nðanxðtÞÞ�T and f iðaiuðtÞÞ

¼ Pi
O½aiðuðtÞþxnÞþbi��Pi

Oðaix
nþbiÞ,i¼ 1,2, . . . ,n.

Clearly, xn is globally exponentially stable for system (5) if and
only if the zero solution of system (7) is globally exponentially
stable.

Theorem 1. If there exist positive-definite symmetric matrices

PARn�n, Q ARn�n, HARn�n and ZARn�n, positive-definite diagonal

matrices D¼ diagfd1,d2, . . . ,dng and L¼ diagfl1,l2, . . . ,lng, real

matrices T1, T2, T3, T4 and a constant k40 such that the following

LMI (8) holds, then the equilibrium point of the neural network (5) is

globally exponentially stable.

X¼

X11 X12 X13 X14 �T1 P

n X22 X23 TT
3 �T2 T4

n n X33 X34 0 DA

n n n X44 0 T3

n n n n X55 0

n n n n n X66

2
6666666664

3
7777777775
o0, ð8Þ

where n are entries readily inferred by symmetry and

X11 ¼ ð2k�4�2t2ÞPþQþt2HþT1þTT
1 ,

X12 ¼ P�T1�TT
2,

X13 ¼ P�ð2kþ2þt2ÞA
T DþAT L�ð2þt2ÞT

T
4,

X14 ¼�ð2þt2ÞT
T
3,

X22 ¼�e�2kt1 Q�T2�TT
2,

X23 ¼ AT DþTT
4,

X33 ¼DAþAT D�2LþT4þTT
4,

X34 ¼ TT
3�T4,

X44 ¼ t1Z�T3�TT
3,
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