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a b s t r a c t

An adaptive learning rule of synapses was proposed for a general asymmetric neural network.

Its feasibility was proved by the Lasalle principle. Numerical simulation results show that synaptic

connection weight can converge to an appropriate strength and the network comes to synchronization.

Furthermore, ISI (inter-spike interval) of synchronization orbit in neural network has a typical period

doubling bifurcation. It is a further improvement compared with bifurcation of the traditional single

neuron model, which promotes our understanding of neuron population activities.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

With the diverse applications of synchronization in engineer-
ing field, network synchronization studies have been rapidly
advanced [1–7]. By controlling some system state variables, the
system can reach the synchronization. Moreover, in the biophy-
sical experiment, scientists found synchronous discharges of
neurons also existed in the brain [8–10]. This discharge pattern
may be related to some functions of the brain. Synchronization in
neural network plays a significant role in the understanding of
the brain.

Synchronization studies of nervous system began with two
coupling neurons, and then went to network. The topological
structures of these networks considered are mainly regular net-
works, such as chain, grid and ring [4–7]. Furthermore, the small-
world network for simulating the nervous system is also involved
[11–13]. However, they are enormously different from the real
nervous system due to their regularity. Because of the impact of
dynamic system in engineering application, in many studies
another problem like symmetrical coupling exists. In other words,
the synaptic connection is mutual, while it does not necessarily
appear in the real nervous system. The improvement of these two
problems has been made in this study.

Now that synchronous discharge may be connected with some
functions of the brain, a natural question is how to achieve the
synchronization in nervous system. By external control of some

system state variables, synchronization can be attained from
some studies on engineering dynamic system [14–16], while
the external control is not required for the synchronization
of nervous system. Due to the plasticity of synapse between
neurons, synchronization can be achieved in the nervous system
by synaptic adaptive learning. We propose an adaptive learning
rule of synapses to simulate plasticity dependent on spike timing,
demonstrating the feasibility of the algorithm by theoretical proof
and simulation.

Another question is what the synchronous orbit is if it exists.
Most results are concerned with dynamic system orbit on single
neuron or two coupling neurons [1–3]. Period doubling bifurca-
tion was also simulated on single neuron or two coupling
neurons, but it should occur to neural network in fact. We find
period doubling bifurcation to chaos also appears in network,
going further than the former results.

2. Adaptive synaptic learning algorithm and theoretical
analysis

Considering a normal network consisting of n neurons, its
topology connection matrix A¼ ðaijÞARn�n. Among aij ¼ 1 when
there is a synapse from jth neuron to the ith neuron; for no
connection and aij ¼ 0,i¼ j. Due to the difference between neural
network and a general dynamic system, synaptic connection is
asymmetrical and thus aij is not necessarily equal to aji.
CðtÞ ¼ ðcijðtÞÞARn�n means the strength of synaptic connection.

Synchronization of neural network means membrane potential
synchronization. We assume the first state variable of dynamic
system is membrane potential. Then the single neuron model is
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The following adaptive learning rule of synapses was designed
for neuron i and neuron j.

(1) Calculate synaptic learning probability PijðtÞ ¼ expð�1=ð9xj
1

�xi
19TðtÞþeÞÞ, where TðtÞ ¼ T0=ð1þatÞ and e is an arbitrarily

small positive number to make sure that no zero appears in
denominator during the computational process.

(2) Generate a random number r. It is subject to uniform
distribution in [0,1].

(3) Compare learning probability and random number. If Pij4r, it
is believed that synapses learning occur and the strength is
modified; otherwise, there is no change. The learning rule is
_cij ¼ Zðxj

1�xi
1Þ

2, where Z represents learning rate.

The algorithm sets a probability judgment, that is, learning
happens only when Pij4r. When presynaptic and postsynaptic
neurons are subthreshold activities, 9xj

1�xi
19 is very small. There-

fore, the synaptic learning probability Pij is also very small, or
even close to zero. The unlikely occurrence of P4r makes the
probability of learning very small. When asynchronous discharge
appears successively, 9xj

1�xi
19 becomes larger and then Pij

becomes larger. The larger Pij becomes, the more possibly synap-
tic learning appears. These two properties accord with the
learning rule of synapses in the real biophysical experiment.
Since learning is dependent on spike times, the sequential
occurrence of action potentials significantly strengthens connec-
tion [14]. Under Hebb principles, strength change of synapses
does not easily occur in subthreshold activities.

TðtÞ is a decreasing function and lim
t-þ1

TðtÞ ¼ 0, which is similar
to cooling function in the simulated annealing algorithm. So other
forms can also be chosen, and synaptic learning more easily
happens in relatively high temperature.

lim
t-þ1

PijðtÞ ¼ lim
t-þ1

expð�1=ð9xj
1�xi

19TðtÞþeÞÞ ¼ e�1=e, which indi-
cates when time t is large enough, the learning probability Pij

becomes smaller than any positive number given if e is chosen
small enough. Then the occurrence of learning is made into a
small probability event. This design well agrees with the biophy-
sical results because network synaptic learning has the limitation
and network will turn to be mature.

When time step tends toward zero, _cijðtÞ ¼ ZPijðtÞðx
j
1�xi

1Þ
2.

Then Lasalle principle is used to prove feasibility of synchro-
nization of asymmetric irregular neural network by this adaptive
algorithm as follows:

Theorem 1. (Lasalle) [17] For dynamic system _X ¼ f ðXÞ,f : Rn-Rn is

a C1 continuous map. If function VðXÞ : Rn-Rþ exists, for each XARn

, _V ðXÞr0 and definition E : ¼ fXARn : _V ðXÞ ¼ 0g . Given that B is the

largest invariant set in E, then each bounded solution will converge to

B when t-þ1 .
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For a general neural network with n neurons, we study the
error dynamic system.
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Theorem 2. B¼ fðeij,cijÞAR2n2

: eij ¼ 0,cij ¼ ĉij,i,j¼ 1,2,:::,ng. For

error dynamic system, the orbit will converge to B with any initial

states, that is eij ¼ xi
1�xj

1-0, cij-ĉij,t-þ1.

Proof. For error system, we define Lyapunov function
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We can get dVðtÞ=dt¼
Pn

i,j ¼ 1ðdVijðtÞ=dtÞr0.
_V ðtÞ ¼ 0 if and only if eij ¼ 0, i,j¼ 1,2:::n. That is to say, B is the

largest invariant set in E. By theorem 1, we can get the conclusion
that the orbit will converge to B with any initial states, that is
eij ¼ xi

1�xj
1-0,cij-ĉij,t-þ1.

By the proof procedure, we find that this adaptive synchroni-
zation approach can be applied to large-scale irregular network,
especially asymmetric network. Furthermore, it can be applied to
biological neural networks because its properties well agree with
some experiment results. The synaptic connection weights will
converge to appropriate values finally by the adaptive learning. In
fact, the network can also achieve synchronization under weights
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