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1. Introduction

In the past decades, analysis and synthesis for nonlinear
systems with time-delays has been one of the most active
research areas. As we all know, in many practical systems, the
system plants contain severe nonlinear properties. Moreover, the
stability and stabilization problems of dynamical systems subject
to nonlinearities are of interest due to the fact that such systems,
especially time-delay systems, include a wide variety of practical
systems and devices, like servo systems, flexible systems, etc.
Indeed, smooth and non-smooth nonlinearities often occur in a
real control process, due to physical, technological, safety con-
straints, even inherent characteristic of considered systems [1].

During the past three decades, the controlling problem concerning
nonlinear systems especially chaotic systems (see [2,3]) has been one
of the extensive research subjects and many useful controlling
methods are proposed, such as observer-based control [4], adaptive
control [5-8], fuzzy control [9], intermittent control [10,11], impulsive
control [12-16], switching control [7,17,18] and so on.

Impulsive control, as an important control means, in the past
several years, has been widely used to stabilize and synchronize
nonlinear systems and chaotic systems. The main idea of impul-
sive control is to change the states of a system whenever some
conditions are satisfied. Moreover, using the impulsive control
method, the driven network receives the signals from the driving
system only in discrete times and the amount of conveyed
information is decreased. This is predominant in practice due to
reduced control cost. In view of those merits, impulsive control
has been extensively applied to investigate the stabilization and
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synchronization for different nonlinear models in recent years
[12-17,19-21].

It is easy to see that the present results focus on the stabiliza-
tion and synchronization of non-time-delayed dynamical systems
[19,20] and nonlinear systems with constant delays [13,14], there
are few reports dealing with nonlinear dynamical systems with
time variable delays by using impulsive control. Moreover, the
linearity of impulsive control is required in many previous results,
such as in [14-16,19-21]. Motivated by the above discussion, the
purpose of this paper is to investigate the stabilization of non-
linear systems with time-varying delays under impulsive control.

The main contribution of this paper lies in the following aspects.
Firstly, a nonlinear dynamical system and corresponding control
scheme are presented by virtue of Dirac impulsive function. Next,
some new criteria are given to ensure the exponential stability of
the origin of the addressed system. Especially, reduction to
absurdity and induction principle are utilized in this paper to
propose the time-varying delays, which are different from the
traditional Lyapunov functional technique. Besides, it is noted that
the constructed impulsive functions in this paper can be nonlinear,
which extend the previous results to some extent such as
[14-16,19-21], in which the linear impulsive function is required.

This paper is organized as follows. In Section 2, a class of
nonlinear systems with time-varying delay is formulated and
some preliminaries are provided. In Section 3, the main results on
global exponential stability of the addressed system are stated
and proved. In Section 4, some numerical simulations are pre-
sented to verify the theoretical results.

2. Model description and preliminaries

Throughout this paper, we always use P’, Ay (P) and An(P) to
denote the transpose, maximum and minimum eigenvalues of a
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symmetrical real matrix P, respectively. The vector (or matrix)
norm is taken to be Euclidean, denoted by I .I. We use
P>0 (<0, <0,>0) to denote a positive (negative, semi-negative,
semi-positive) definite matrix P.

Consider a class of nonlinear systems

X(t) = AX(6) +f (x(1)) + g(x(t—(1))), (1)
where t e R™ =[0,+0c0), xe R" is the state variable, A is an nxn
constant matrix, f(-), g(-): R"—R" are the continuous vector-
valued functions, 7(t) denotes the time-delay and satisfies

O<t(t)< forall teR™ for some constant 7 > 0.

Assume that system (1) satisfies the following initial condition:
x(t)=¢(t) forall te[-1,0],
where ¢(t) e C([—7,0],R"), here C(—7,0],R") denotes the Banach
space of all continuous vector-valued functions ¢(t)= (¢p4(t),¢,
O .. ()T : [-7,0]1-R" with the norm l¢l=sup_._,.o>
=1"[¢;(0)]. '

In this paper, we introduce the following assumption.

(H1) f(0)=g(0)=0 and there exist two positive definite
matrixes L = (lj),, and M = (mj),, such that for all x,y e R"

If@x)—fW)I? < x=y)'Lix—y), Igx)—-gW)I* < x—y) M(x-y).

Remark 1. Assumption (H;) implies that both functions f(-) and
g(-) satisfy the global Lipschitz condition. In fact, from assumption
(Hy) the following inequalities are obtained:

If ) —fWIl < /AuD)lx—yl, g —gW)l < /AuM)lx—yl

for all x,y e R".

Remark 2. In this paper f(0)=g(0)=0 are required for conve-
nience, which guarantee that the origin is an equilibrium of
system (1). In fact, if system (1) has an equilibrium x* # 0, then
let y = x—x*, from system (1), we have

y(6) =AY+ Y(0)+ZW(E—(1)), (2)

where f(y(t)) =fx()—f(x*), EW(t—1(1))) = gX(E—1(t))—g(x*). For
system (2), we see that f(0)=g(0)=0 and the origin is an
equilibrium.

To stabilize the origin of system (1), we introduce a control
input u(t,x(t)) into system (1), and further establish the following
control system:

X(6) = Ax(8) +-f (x(1)) + g(x(t—T(8))) +u(t, X(1)), 3)
where u(t,x(t)) = uq(t,x(t))+uy(t,x(t)) and

ur(tx(0) = > (OFx(D),

k=1

Uz (EX(0) = Y S(t—t)(PX()—X(D)),

k=1

“4)

here F is an n x n constant matrix, P(-) : R" —»R" is a vector-valued
function for each keZ* ={1,2,...}, 6(-) denotes the Dirac func-
tion, and [,(t) is given by

1,
lk(t) = { 0

withO<t; <ty < - <ty <
It is clear from (4) that

uq (t,x(t)) = Fx(t), te(tp_1.ty], keZ™. (5)

1 <t<ty,
otherwise,

... and limy_, . t; = oo.

From (3) and (4), we see that u,(t,x(t)) =0 at t #t, and for any
small enough constant h >0

ty+h
Xty +h)—x(ty) = /r AX(5) + F(X(5)) + EX(5—T(5)))

+U1(S,X(8))+ Uz (s,x(5))] ds

ty+h
- /t [AX(S) +f(X(5) + EX(5—T(5))] ds

ty+h
+ / 13 (5,X(5)) S+ Py(Xe(tr)—X(ty). ©)

ty
Let h—07, then we can obtain from (6)
X(t) = Pr(x(ty)). (7)
According to (5) and (7), system (3) can be rewritten as

X(t) = Ax()+f(x(t) +gx(t—T(D) +Fx(t), t#ty,
X(t7) = Py(x(ty)), keZ*. @)

For each function Py(-) (keZ™), the following assumption is
introduced.

(Hz) Pr(0)=0 and there
P =(P§)nn such that

is a positive definite matrix

PI()P(x) <x"Pix forall xeR".

Lemma 1 (Zhang et al. [22]). Let P be an n x n positive definite
matrix, Q be an n x n symmetrical matrix, then for any x e R"

Jm(PQXTPx < x"Qx < An(P 1 Q)x"Px.

3. Main results

In this section, we investigate the stability of the origin of
system (1) in virtue of the control (4).

Theorem 1. Under assumptions (Hy) and (H>), if there exist n x n
matrix Q >0, constants p, >0 and ¢ >0 (i=1,2) such that the
following conditions hold

(@) QA+ATQ+QF +FTQ+61Q% +&7' L+Q* +p,Q <0;
(b) 40—py +(Am(Q~'M)/e,) exp(40T) < 0, where

no . ) , 15
5= sup { % } 8 = max(1,Ay(Q)im(Q ' Py).
kezt Lbk—tk—1

Then the origin of system (1) is globally exponentially stable under
controller (4).

Proof. Consider the following auxiliary function:
V() =x"(HQx(),
which implies that
2m(Q)IX(H)1Z < V() < Am(Q)IIx(H)I12. Q)
When t # t, from condition (a), the Dini right derivative of V(t)
with respect to time t along solution x(t) of system (8) is
calculated and estimated as follows:
D V() <x"()(QA+ATQ+QF +FTQx(0)+&1x ()Q%x(D)

+&7 X (OLX(6) + e2xT (HQ2x(D)

+ &5 X (t—T(t))Mx(t—(1))

; 1
<—pV(o+ ML My ez, (10)

When t = t;, from assumption (H,) and (9) we further obtain
Vit < Im(QXT (t)Prx(ty) < Zm(Q)7m(Q ' PV (t). (1m
From condition (b), there exists a constant y > 2 such that

s -1
2y-p,+ 7“‘”(% M) g2 _ o,
2
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