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In this paper, the stabilization for a class of nonlinear systems with time-varying delays is proposed via

impulsive control. Using some analysis techniques such as reduction to absurdity, some new and useful

criteria for global exponential stability are established. Furthermore, an example and some numerical

simulations are presented to verify the effectiveness of the theoretical results.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, analysis and synthesis for nonlinear
systems with time-delays has been one of the most active
research areas. As we all know, in many practical systems, the
system plants contain severe nonlinear properties. Moreover, the
stability and stabilization problems of dynamical systems subject
to nonlinearities are of interest due to the fact that such systems,
especially time-delay systems, include a wide variety of practical
systems and devices, like servo systems, flexible systems, etc.
Indeed, smooth and non-smooth nonlinearities often occur in a
real control process, due to physical, technological, safety con-
straints, even inherent characteristic of considered systems [1].

During the past three decades, the controlling problem concerning
nonlinear systems especially chaotic systems (see [2,3]) has been one
of the extensive research subjects and many useful controlling
methods are proposed, such as observer-based control [4], adaptive
control [5–8], fuzzy control [9], intermittent control [10,11], impulsive
control [12–16], switching control [7,17,18] and so on.

Impulsive control, as an important control means, in the past
several years, has been widely used to stabilize and synchronize
nonlinear systems and chaotic systems. The main idea of impul-
sive control is to change the states of a system whenever some
conditions are satisfied. Moreover, using the impulsive control
method, the driven network receives the signals from the driving
system only in discrete times and the amount of conveyed
information is decreased. This is predominant in practice due to
reduced control cost. In view of those merits, impulsive control
has been extensively applied to investigate the stabilization and

synchronization for different nonlinear models in recent years
[12–17,19–21].

It is easy to see that the present results focus on the stabiliza-
tion and synchronization of non-time-delayed dynamical systems
[19,20] and nonlinear systems with constant delays [13,14], there
are few reports dealing with nonlinear dynamical systems with
time variable delays by using impulsive control. Moreover, the
linearity of impulsive control is required in many previous results,
such as in [14–16,19–21]. Motivated by the above discussion, the
purpose of this paper is to investigate the stabilization of non-
linear systems with time-varying delays under impulsive control.

The main contribution of this paper lies in the following aspects.
Firstly, a nonlinear dynamical system and corresponding control
scheme are presented by virtue of Dirac impulsive function. Next,
some new criteria are given to ensure the exponential stability of
the origin of the addressed system. Especially, reduction to
absurdity and induction principle are utilized in this paper to
propose the time-varying delays, which are different from the
traditional Lyapunov functional technique. Besides, it is noted that
the constructed impulsive functions in this paper can be nonlinear,
which extend the previous results to some extent such as
[14–16,19–21], in which the linear impulsive function is required.

This paper is organized as follows. In Section 2, a class of
nonlinear systems with time-varying delay is formulated and
some preliminaries are provided. In Section 3, the main results on
global exponential stability of the addressed system are stated
and proved. In Section 4, some numerical simulations are pre-
sented to verify the theoretical results.

2. Model description and preliminaries

Throughout this paper, we always use PT, lMðPÞ and lmðPÞ to
denote the transpose, maximum and minimum eigenvalues of a
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symmetrical real matrix P, respectively. The vector (or matrix)
norm is taken to be Euclidean, denoted by J � J. We use
P40 ðo0,r0,Z0Þ to denote a positive (negative, semi-negative,
semi-positive) definite matrix P.

Consider a class of nonlinear systems

_xðtÞ ¼ AxðtÞþ f ðxðtÞÞþgðxðt�tðtÞÞÞ, ð1Þ

where tARþ ¼ ½0,þ1Þ, xARn is the state variable, A is an n�n

constant matrix, f ð�Þ, gð�Þ : Rn-Rn are the continuous vector-
valued functions, tðtÞ denotes the time-delay and satisfies
0rtðtÞrt for all tARþ for some constant tZ0.

Assume that system (1) satisfies the following initial condition:

xðtÞ ¼fðtÞ for all tA ½�t,0�,

where fðtÞACð½�t,0�,Rn
Þ, here Cð½�t,0�,Rn

Þ denotes the Banach
space of all continuous vector-valued functions fðtÞ ¼ ðf1ðtÞ,f2

ðtÞ, . . . ,fnðtÞÞ
T : ½�t,0�-Rn with the norm JfJ¼ sup�tr tr0

P
i¼ 1n9fiðtÞ9.

In this paper, we introduce the following assumption.
(H1) f ð0Þ ¼ gð0Þ ¼ 0 and there exist two positive definite

matrixes L¼ ðlijÞn�n and M¼ ðmijÞn�n such that for all x,yARn

Jf ðxÞ�f ðyÞJ2rðx�yÞT Lðx�yÞ, JgðxÞ�gðyÞJ2rðx�yÞT Mðx�yÞ:

Remark 1. Assumption ðH1Þ implies that both functions f ð�Þ and
gð�Þ satisfy the global Lipschitz condition. In fact, from assumption
ðH1Þ the following inequalities are obtained:

Jf ðxÞ�f ðyÞJr
ffiffiffiffiffiffiffiffiffiffiffiffi
lMðLÞ

p
Jx�yJ, JgðxÞ�gðyÞJr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lMðMÞ

p
Jx�yJ

for all x,yARn.

Remark 2. In this paper f ð0Þ ¼ gð0Þ ¼ 0 are required for conve-
nience, which guarantee that the origin is an equilibrium of
system (1). In fact, if system (1) has an equilibrium xna0, then
let y¼ x�xn, from system (1), we have

_yðtÞ ¼ AyðtÞþ f ðyðtÞÞþg ðyðt�tðtÞÞÞ, ð2Þ

where f ðyðtÞÞ ¼ f ðxðtÞÞ�f ðxnÞ, gðyðt�tðtÞÞÞ ¼ gðxðt�tðtÞÞÞ�gðxnÞ. For
system (2), we see that f ð0Þ ¼ g ð0Þ ¼ 0 and the origin is an
equilibrium.

To stabilize the origin of system (1), we introduce a control
input uðt,xðtÞÞ into system (1), and further establish the following
control system:

_xðtÞ ¼ AxðtÞþ f ðxðtÞÞþgðxðt�tðtÞÞÞþuðt,xðtÞÞ, ð3Þ

where uðt,xðtÞÞ ¼ u1ðt,xðtÞÞþu2ðt,xðtÞÞ and

u1ðt,xðtÞÞ ¼
X1
k ¼ 1

lkðtÞFxðtÞ,

u2ðt,xðtÞÞ ¼
X1
k ¼ 1

dðt�tkÞðPkðxðtÞÞ�xðtÞÞ,

8>>>>><
>>>>>:

ð4Þ

here F is an n�n constant matrix, Pkð�Þ : Rn-Rn is a vector-valued
function for each kAZþ ¼ f1,2, . . .g, dð�Þ denotes the Dirac func-
tion, and lk(t) is given by

lkðtÞ ¼
1, tk�1otrtk,

0 otherwise,

(

with 0ot1ot2o � � �otko � � � and limk-1tk ¼1.
It is clear from (4) that

u1ðt,xðtÞÞ ¼ FxðtÞ, tAðtk�1,tk�, kAZþ : ð5Þ

From (3) and (4), we see that u2ðt,xðtÞÞ ¼ 0 at tatk and for any
small enough constant h40

xðtkþhÞ�xðtkÞ ¼

Z tk þh

tk

½AxðsÞþ f ðxðsÞÞþgðxðs�tðsÞÞÞ

þu1ðs,xðsÞÞþu2ðs,xðsÞÞ� ds

¼

Z tk þh

tk

½AxðsÞþ f ðxðsÞÞþgðxðs�tðsÞÞÞ� ds

þ

Z tkþh

tk

u1ðs,xðsÞÞ dsþPkðxkðtkÞÞ�xðtkÞ: ð6Þ

Let h-0þ , then we can obtain from (6)

xðtþk Þ ¼ PkðxðtkÞÞ: ð7Þ

According to (5) and (7), system (3) can be rewritten as

_xðtÞ ¼ AxðtÞþ f ðxðtÞÞþgðxðt�tðtÞÞÞþFxðtÞ, tatk,

xðtþk Þ ¼ PkðxðtkÞÞ, kAZþ :

(
ð8Þ

For each function Pkð�Þ ðkAZþ Þ, the following assumption is
introduced.

(H2) Pkð0Þ ¼ 0 and there is a positive definite matrix
Pk ¼ ðp

k
ijÞn�n such that

PT
k ðxÞPkðxÞrxT Pkx for all xARn:

Lemma 1 (Zhang et al. [22]). Let P be an n�n positive definite

matrix, Q be an n�n symmetrical matrix, then for any xARn

lmðP
�1Q ÞxT PxrxT QxrlMðP

�1Q ÞxT Px:

3. Main results

In this section, we investigate the stability of the origin of
system (1) in virtue of the control (4).

Theorem 1. Under assumptions ðH1Þ and ðH2Þ, if there exist n�n

matrix Q 40, constants p240 and ei40 ði¼ 1,2Þ such that the

following conditions hold

(a) QAþAT QþQFþFT Qþe1Q2
þe�1

1 Lþe2Q2
þp2Q r0;

(b) 4d�p2þðlMðQ
�1MÞ=e2Þ expð4dtÞo0, where

d¼ sup
kAZ þ

ln dk

tk�tk�1

� �
, dk ¼maxf1,lMðQ ÞlMðQ

�1PkÞg:

Then the origin of system (1) is globally exponentially stable under

controller (4).

Proof. Consider the following auxiliary function:

VðtÞ ¼ xT ðtÞQxðtÞ,

which implies that

lmðQ ÞJxðtÞJ2rVðtÞrlMðQ ÞJxðtÞJ2: ð9Þ

When tatk, from condition (a), the Dini right derivative of V(t)
with respect to time t along solution x(t) of system (8) is
calculated and estimated as follows:

DþVðtÞrxT ðtÞðQAþAT QþQFþFT Q ÞxðtÞþe1xT ðtÞQ2xðtÞ

þe�1
1 xT ðtÞLxðtÞþe2xT ðtÞQ2xðtÞ

þe�1
2 xT ðt�tðtÞÞMxðt�tðtÞÞ

r�p2VðtÞþ
lMðQ

�1MÞ

e2
Vðt�tðtÞÞ: ð10Þ

When t¼ tk, from assumption ðH2Þ and (9) we further obtain

Vðtþk ÞrlMðQ Þx
T ðtkÞPkxðtkÞrlMðQ ÞlMðQ

�1PkÞVðtkÞ: ð11Þ

From condition (b), there exists a constant g42d such that

2g�p2þ
lMðQ

�1MÞ

e2
e2gto0:
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