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a b s t r a c t

In this paper, based on recently developed deterministic learning (DL) theory, we investigate the learning
issue in neural network (NN) output feedback control of robot manipulators with unknown system
dynamics and disturbance. Our objective is to learn the unknown closed-loop robot system dynamics
while tracking to a periodic or periodic-like reference orbit with only joint angle measurements. Firstly, a
high-gain observer (HGO) is used to estimate the joint velocities. An adaptive NN output feedback
controller is then designed to guarantee the stability of the closed-loop robot system and the tracking
performance when tracking a periodic or periodic-like reference orbit. Based on DL theory, when a
partial persistence of excitation (PE) condition of the regression subvector is satisfied, part of the neural
weights of the employed radial basis function (RBF) NN will converge to their optimal values. The
unknown dynamics of robot manipulators can be learned by NN in a local region along the estimated
state trajectory and the learned knowledge is stored in constant RBF networks. Secondly, the peaking
phenomenon generated by the use of HGO and its adverse effect on learning are analyzed. If the gain of
HGO is not chosen too high, the peaking phenomenon will be weakened and the accuracy of the
estimated system states can still be guaranteed for learning from robot manipulators control. Thirdly,
when repeating same or similar control tasks, the learned knowledge can be recalled and reused to
achieve the guaranteed stability and better control performance with little effort. Finally, simulation
studies are included to demonstrate the effectiveness of the proposed method.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the last two decades, there has been tremendous progress
in the development of controllers for robot manipulators, such as
adaptive control [1–3], feedforward and computed torque control
[4,5], variable structure control [6,7] and fuzzy control [8,9]. When
the robot dynamics are highly uncertain, adaptive and learning
control laws have been developed in order to cope with model
uncertainties [10–13]. By using neural networks (NNs) to approx-
imate the unknown nonlinearities in robot system dynamics,
various adaptive NN control schemes were developed, including
NN-based inverse control [14,15], indirect adaptive NN control [16]
and direct adaptive NN control [17–20]. In case complete state
measurements (especially for velocity of each joint) are not
available, adaptive NN output feedback controllers using observers
have been studied [21,22]. Though much progress has been

achieved, the learning capability of NNs in adaptive NN control,
including for adaptive NN output feedback control with observers,
is actually very limited. The employed NNs do not have the ability
to learn system dynamics in stable closed-loop control of robot
manipulators, and need to recalculate (or readapt) the parameters
(neural weights) even for repeating exactly the same control tasks.

Recently, a deterministic learning (DL) theory [23,24] was
proposed for NN approximation of nonlinear dynamical systems
with periodic or recurrent trajectories. It is shown that, by using
localized radial basis function (RBF) NNs, almost any periodic or
recurrent trajectory can lead to the satisfaction of a partial
persistence of excitation (PE) condition. This partial PE condition
leads to exponential stability of a class of linear time-varying
adaptive systems, and accurate NN approximation of the system
dynamics is achieved in a local region along the periodic or
recurrent trajectory. In [25], with only output measurements,
locally accurate identification of nonlinear system dynamics can
still be achieved by using a high-gain observer (HGO). Further, by
embedding the learned knowledge of system dynamics into a RBF
NN-based nonlinear observer, it is shown that correct state
estimation can be achieved according to the internal matching of
the underlying system dynamics, rather than by using high gain
domination.
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In this paper, we investigate the learning issue in NN output
feedback control of robot manipulators with unknown system
dynamics and disturbance. Our objective is to track a periodic or
periodic-like reference orbit with only joint angle measurements,
and learn the unknown closed-loop robot system dynamics.
Motivated by [25], firstly, an HGO is used to estimate the joint
velocities. An adaptive NN output feedback controller is then
designed to guarantee the stability of the closed-loop robot system
and the tracking performance when tracking a periodic or
periodic-like reference orbit. Based on DL theory, when a partial
PE condition of the regression subvector is satisfied, part of the
neural weights of the employed RBF NN will converge to their
optimal values. The unknown dynamics of robot manipulators can
be learned by NN in a local region along the estimated state
trajectory and the learned knowledge is stored in constant RBF
networks. Secondly, the peaking phenomenon generated by the
use of HGO and its adverse effect on learning are analyzed. If the
gain of HGO is not chosen too high, the peaking phenomenon will
be weakened and the accuracy of the estimated system states can
still be guaranteed for learning from robot manipulators control.
Thirdly, when repeating same or similar control tasks, the learned
knowledge can be recalled and reused to achieve the guaranteed
stability and better control performance with little effort.

The rest of the paper is organized as follows. Section 2 briefly
describes the problem formulation and preliminaries. Learning
from NN output feedback control of robot manipulators, the
analysis of peaking phenomenon and its elimination measures is
presented in Section 3. Section 4 presents the neural learning
control scheme to guarantee the output tracking performance in
the same or similar control tasks. Simulation results are included
in Section 5. Section 6 contains concluding remarks.

2. Problem formulation and preliminaries

2.1. Problem formulation

The dynamic model for an n-link rigid robot manipulator is
assumed to have the following form [5]:

MðqÞq€ þVmðq,q
̇ Þq̇ þGðqÞþFðq̇ Þþd¼ τ ð1Þ

where q∈Rn is the joint position vector, q
̇
∈Rn is the joint velocity

vector, q
€
∈Rn is the joint acceleration vector;MðqÞ∈Rn�n is the inertia

matrix which is symmetric and positive definite; Vmðq,q
̇ Þ∈Rn�n is

the coriolis and centrifugal loading vector; GðqÞ∈Rn is the gravita-
tional loading vector; Fðq̇ Þ∈Rn is the friction vector; d∈Rn is the
vector representing external disturbance, and τ∈Rn is the vector of
the applied torque. The dynamic system given by (1) exhibits the
following properties which will be utilized in the subsequent
control development and stability analysis.

Property 1. The derivative of the inertia matrix and the disturbance
is bounded, that is, there exist km and dm such that ∥M

̇
∥≤km, ∥d∥≤dm,

where km and dm are positive constants, and ∥ � ∥ denotes the
Euclidean norm.

Property 2. The reference trajectory and its first and second time-
derivatives, namely qd∈R

n, q
̇
d∈R

n and q
€

d∈R
n are periodic and

bounded.

Our objective is to design an adaptive NN output feedback
controller by using only joint position measurements for system
(1) such that (1) all the signals in the closed-loop systems are
bounded and the estimated joint velocity obtained through an
HGO can arbitrarily approximate the true state; (2) the joint
position q asymptotically tracks the desired joint position qd;
(3) the RBF NN can learn the unknown dynamics of system

(1) in the stable control process; and (4) the learned knowledge
can be reused for tracking same or similar trajectories.

2.2. Localized RBF networks

The RBF networks can be described by f nnðZÞ ¼∑N
i ¼ 1wisiðZÞ ¼

WTSðZÞ, where Z∈ΩZ⊂Rp is the input vector, W ¼ ½w1,…,wN�T∈RN

is the weight vector, N is the NN node number, and SðZÞ ¼
½s1ð∥Z−μ1∥Þ,…,sNð∥Z−μN∥Þ�T is the regressor vector, with
sið∥Z−μi∥Þ ¼ exp½−ðZ−μiÞT ðZ−μiÞ=η2i �, with i¼ 1,…,N being a Gaus-
sian RBF, μi being the center of the receptive field and ηi being the
width of the receptive field. It has been proven in [26] that an RBF
network, with sufficiently large node number N and appropriately
placed node centers and variances, can approximate any contin-
uous function f ðZÞ : ΩZ-R over a compact set ΩZ⊂Rq to arbitrary
accuracy according to f ðZÞ ¼WnTSðZÞþϵ, ∀Z∈ΩZ , where Wn are the
ideal constant weights, ϵ is the approximation error. It is normally
assumed that there exists the ideal weight vector Wn such that
jϵjoϵn (with ϵn > 0) for all Z∈ΩZ . Moreover, for any bounded
trajectory Z(t) within the compact set ΩZ , f(Z) can be approximated
by using a limited number of neurons located in a local region
along the trajectory: f ðZÞ ¼WnT

ζ SζðZÞþϵζ , where the subscript ð�Þζ
stands for the regions close to the trajectory Z(t), SζðZÞ ¼
½sj1ðZÞ,…,sjζðZÞ�T∈RNζ , with NζoN, jsji j > ιðji ¼ j1,…,jζÞ, ι > 0 is a
small positive constant, Wn

ζ ¼ ½ωn

j1
,…,ωn

jζ
�, and ϵζ is the approxima-

tion error, with ϵζ ¼OðϵÞ ¼ OðϵnÞ.
Based on the previous results on the PE property of RBF

networks, Wang and Hill [23] have proved that for a localized
RBF network WTSðZÞ whose centers placed on a regular lattice,
almost any recurrent trajectory Z(t), can lead to the satisfaction of
the PE condition of regressor subvector SζðZÞ.

2.3. DL theory

In DL theory, identification of system dynamics of general
nonlinear systems is achieved according to the following elements:
(i) employment of localized RBF networks; (ii) satisfaction of a
partial PE condition; (iii) exponential stability of the adaptive
system along the periodic or recurrent orbit; and (iv) locally
accurate NN approximation of the unknown system dynamics [23].

Choose

W ¼meant∈½ta ,tb �
cW ðtÞ ð2Þ

with ½ta,tb�, tb > ta > T representing a time segment after the
transient process. Locally accurate approximation of system
dynamics along the tracking orbit φζ can be obtained as follows
[23]:

f ðZÞ ¼WnT
ζ SζðZÞþϵζ ¼ cWT

SðZÞþϵ1 ¼W
T
SðZÞþϵ2 ð3Þ

where both ϵ1 and ϵ2 are close to ϵn.
In [24], a lemma about the exponential stability of a class of

linear time-varying systems associated with adaptive neural con-
trol of nonlinear systems with unknown affine terms is presented
as follows:

e
̇
1

e
̇
2

θ
̇

26664
37775¼

AðtÞ
0

ST ðtÞ
0 −ΓSðtÞGðtÞ 0

2664
3775

e1
e2
θ

264
375 ð4Þ

with e1∈Rn−q, e2∈Rq, θ∈Rp, Að�Þ : ½0,∞Þ-Rn�n, Sð�Þ : ½0,∞Þ-Rp�q,
Gð�Þ : ½0,∞Þ-Rq�q and Γ ¼ ΓT > 0. For ease of description, define
BðtÞ ¼ ½0 SðtÞ�∈Rp�n, PðtÞ ¼ block-diagfI,GðtÞg∈Rn�n, where block-diag
here refers to block diagonal form and let CðtÞ ¼ ΓBðtÞPðtÞ.
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