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a b s t r a c t

In this letter, together with some novel Lyapunov–Krasovskii functional (LKF) terms and effective

techniques, two novel sufficient conditions can be established to guarantee a class of discrete-time

delayed neural networks with distributed delay to be exponentially stable, in which the linear

fractional uncertainties are involved and the information on time-delay is fully utilized. Through

employing the reciprocal convex technique, some previously ignored terms can be reconsidered when

estimating the time difference of LKF and the criteria are presented via linear matrix inequalities (LMIs),

whose solvability heavily depends on the information of addressed systems. Finally, three numerical

examples are provided to show that the achieved conditions can be less conservative than some

existing ones based on comparing results.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, neural networks have been applied to various
signal processing problems, such as optimization, image processing,
associative memory design, etc. In those applications, the key
feature of the designed neural network keeps to be convergent.
Meanwhile, since there inevitably exists the communication delay
which is the main source of oscillation and instability, great efforts
have been imposed on delayed neural networks (DNNs) and many
elegant results have been reported [1–11,13–34]. Meanwhile, in
practical applications, though it is difficult to describe the accurate
form of time-delay, the bounds on its range and time variation still
can be measured. Since Lyapunov functional approach presented
some simple and delay-independent results, the Lyapunov–Krasovs-
kii functional (LKF) method has been widely utilized due to that its
analytic procedure can fully cover and utilize the information on
time-delay. Thus in past decade, the delay-dependent stability for
DNNs has become an important topic of primary significance, in
which the main purpose is to derive the time-delay maximum
allowable upper bound (MAUB) such that the DNNs keep to be
globally stable in different ways [1–11,13–17,19–22,24–34].

In order to implement the continuous-time systems for simu-
lation or computational purposes, it is important to formulate
discrete-time systems which are the analogues of the continuous-

time ones. It is often to obtain the discrete-time models including
neural networks from the continuous-time ones by using a
discretization technique. Ideally, the discrete-time analogue
should inherit the dynamical behaviors of the continuous-time
networks, and maintain functional similarity to the continuous-
time ones. Unfortunately, the discretization cannot always pre-
serve the similar dynamics of the continuous-time counterpart
even for a small sampling period [12]. Presently, since discrete-
time neural networks have already been applied in many fields,
such as image processing, quadratic optimization problems,
system identification, many elegant results have been reported
to study their dynamical behaviors [13–33]. Through using
various effective techniques such as free-weighting matrix, LMI,
and summation inequality, some easy-to-test results have been
given for discrete-time DNNs, in which not only time-varying
delay but also distributed delay was involved [13–20]. In [21], the
discrete-time BAM DNNs were considered and the restriction
1otðkþ1Þo1þtðkÞ was imposed on time-delay. By utilizing
Razumikhin technique [22,23], the stability for impulsive DNNs
has been tackled and some results were given via nonlinear
matrix inequalities. Meanwhile, some authors have focused on
the stability for discrete-time switched DNNs by means of
average dwell time method and LMI results were presented
[24–26], in which time-delays are variable or constant. Together
with Markovian jumping parameters, some sufficient conditions
on robust stability were presented in the forms of LMIs [27–29].
In [30–32], by using the stochastic process theory and convex
technique, the mean-squared stability was also studied and some
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delay-dependent criteria were obtained. Furthermore, since
the delay-partitioning idea has been verified to be very effective
in re- ducing the conservatism yet induced the complexities of
the derived result [34], which was also improved and extended to
discrete-time case [33,35]. Though in [13–33,35], these derived
results and techniques were elegant, there still exist two points
waiting for the improvements. First, most recently, because the
convex technique was a good tool in tackling time-delay system,
it was also widely employed in discrete DNNs [19,24,25,27,31,33].
Yet, this technique still needs further improvement owing to that
some important terms were ignored during estimating time
difference of LKF, which was illustrated in [36]. Second, the
constructions of LKFs in [14–17,19–33] seemed simple and they
cannot fully cover the information on addressed networks. On the
other hand, as for delay tðtÞA ½0,tm�, since the triple integration
LKF terms such as
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2

Z 0

�tm

Z 0

l

Z t

tþy
_xT
ðsÞQ _xðsÞ ds dy dl

were first chosen in continuous-time case [37], it also has been used
to tackle continuous-time DNNs since it also could reduce the
conservatism greatly [10,11]. Yet, it is worth noting that few present
literatures have utilized and extended the triple integration LKF
term to tackle the discrete-time DNNs. Meanwhile, we noticed that
the analytic techniques need to be improved since the works [10,11]
gave the less tighter upper bounds on time difference of the LKFs,
which will limit the application areas. Overall, two points above
remain challenging and constitute the main focus of this work.

In this work, we will study the robust exponential stability for
the uncertain discrete-time DNNs with unbounded distributed
delay, in which the state time-delay belongs to an interval and the
linear fractional uncertainties are involved. Through constructing
one improved Lyapunov–Krasovskii functional and utilizing some
most updated techniques for achieving the delay-dependence, two
novel conditions can be established. Especially, the derived criteria
are presented in terms of LMIs and their feasibility can be easily
checked. Finally, three numerical examples show that the proposed
conditions are less conservative than some existent ones.

Notations. For the symmetric matrices X,Y ,X4Y (respectively,
XZY) means that X�Y40 ðX�YZ0Þ is a positive-definite (respec-
tively, positive-semidefinite) matrix; lmaxðAÞ, lminðAÞ denote the
maximum eigenvalue and minimum one of matrix A, respectively;
In denotes the n�n identity matrix and 0m�n means the m� n zero
matrix; the symmetric term in a symmetric matrix is denoted by n.

2. Model descriptions and preliminaries

In this letter, we consider the uncertain discrete-time delayed
neural networks (DNNs) described by

zðkþ1Þ ¼ CðkÞzðkÞþAðkÞFðzðkÞÞþBðkÞFðzðk�tðkÞÞÞ

þDðkÞ
Xþ1
i ¼ 1

dðiÞFðzðk�iÞÞþL, ð1Þ

for k¼ 1,2, . . . , where zðkÞ ¼ ½z1ðkÞ, . . . ,znðkÞ�
T ARn is the neural state

vector, Fðzð�ÞÞ ¼ ½F1ðz1ð�ÞÞ, . . . ,Fnðznð�ÞÞ�
T represents the neuron activa-

tion function, L¼ ½l1, . . . ,ln�
T ARn is a constant input vector;

CðkÞ ¼ CþDCðkÞ, AðkÞ ¼ AþDAðkÞ, BðkÞ ¼ BþDBðkÞ, and DðkÞ ¼Dþ

DDðkÞ are the uncertain matrices of appropriate dimensions, in which
C ¼ diagðc1, . . . ,cnÞ is a diagonal matrix with 9ci9o1 for i¼ 1, . . . ,n.

The following assumptions and definition are made through-
out the letter.

Assumption 1. The time-varying delay tðkÞ satisfies the condition

t0rtðkÞrtm, ð2Þ

in which t0,tm are known positive integers. Here we denote
tm ¼ tm�t0.

Assumption 2. For i¼ 1,2, . . . ,n, each activation function Fið�Þ in
(1) satisfies the following condition:

s�i r
FiðxÞ�FiðyÞ

x�y
rsþi , 8x, yAR, xay,

and sþi ,s�i are any constants. We also introduce the denotations
as S¼ diagðs�1 , . . . ,s�n Þ, and

S1 ¼ diagðsþ1 s�1 , . . . ,sþn s�n Þ, S2 ¼ diag
sþ1 þs

�
1

2
, . . . ,

sþn þs�n
2

� �
:

ð3Þ

Assumption 3. Here DCðkÞ, DAðkÞ, DBðkÞ, DDðkÞ represent the
time-varying parameter uncertainties and are assumed to satisfy

½DCðkÞ DAðkÞ DBðkÞ DDðkÞ� ¼HDðkÞ½Ec Ea Eb Ed�,

DðkÞ ¼LðkÞðI�JLðkÞÞ�1, I�JT J40, ð4Þ

in which H, J, Ec , Ea, Eb, Ed are known constant matrices of the
appropriate dimensions and LðkÞ is an unknown time-varying
matrix function satisfying LT

ðkÞLðkÞr I.

Assumption 4. The function dðiÞ is a real-valued non-negative
function defined on iAZþ , and there exist two constant scalars
x40,m41 such that

Xþ1
i ¼ 1

dðiÞ ¼ xoþ1,
Xþ1
i ¼ 1

dðiÞimi ¼ pðmÞoþ1:

Remark 1. From Assumption 3, it is easy to see that the above
structured linear fractional form includes the widely used norm-
bounded uncertainty as its special case when J¼0.

It is clear that under Assumptions 1–4 and Proposition in [16],
system (1) has one equilibrium point denoted by zn ¼ ½zn1, . . . ,znn�

T .
In the following, the equilibrium point zn of the system (1) is first
shifted to the origin by the transformation xð�Þ ¼ zð�Þ�zn, which
can convert the system (1) to the following form:

xðkþ1Þ ¼ CðkÞxðkÞþAðkÞf ðxðkÞÞþBðkÞf ðxðk�tðkÞÞÞ

þDðkÞ
Xþ1
i ¼ 1

dðiÞf ðxðk�iÞÞ, ð5Þ

where xðkÞ ¼ ½x1ðkÞ, . . . ,xnðkÞ�
T is the state vector of transformed

system (5); f ðxð�ÞÞ ¼ ½f 1ðx1ð�ÞÞ, . . . ,f nðxnð�ÞÞ�
T , f jðxjð�ÞÞ ¼ Fjðxjð�Þþ

znj Þ�Fjðz
n

j Þ, j¼ 1, . . . ,n. Note that the function f jð�Þ still satisfies
the condition

s�j r
f jðxÞ�f jðyÞ

x�y
rsþj , 8x, yAR, xa0: ð6Þ

It is easy to check f jð0Þ ¼ 0.

Definition 1 (Chen [13]). The delayed neural networks (5) is said
to be robustly exponentially stable, if there exist scalars a40 and
bAð0,1Þ such that JxðkÞJra � bkmax�1r jr0JxðjÞJ for all kZ0 and
the parameter uncertainties satisfying the admissible condition
(4), where x(k) is the solution of model (5) and JxðkÞJ¼

½
Pn

i ¼ 1 x2
i ðkÞ�

1=2 is the Euclidean norm of x(k).

The problem to be addressed in next section can be formulated

as developing a condition ensuring that the discrete-time delayed

neural networks (5) is robustly exponentially stable.

3. Delay-dependent stability for discrete-time DNNs

In the section, based on LMI and reciprocal convex approach, a
delay-dependent criterion will be first derived for the global
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