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a b s t r a c t

This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural
network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be
responsive to certain spike train firing rates and behave in a similar manner as fuzzy membership
functions. The connectivity of the hidden and output layers in the fuzzy spiking neural network (FSNN) is
representative of a fuzzy rule base. Fuzzy C-Means clustering is utilised to produce clusters that represent
the antecedent part of the fuzzy rule base that aid classification of the feature data. Suitable cluster widths
are determined using two strategies; subjective thresholding and evolutionary thresholding respectively.
The former technique typically results in compact solutions in terms of the number of neurons, and is
shown to be particularly suited to small data sets. In the latter technique a pool of cluster candidates is
generated using Fuzzy C-Means clustering and then a genetic algorithm is employed to select the most
suitable clusters and to specify cluster widths. In both scenarios, the network is supervised but learning
only occurs locally as in the biological case. The advantages and disadvantages of the network topology
for the Fisher Iris and Wisconsin Breast Cancer benchmark classification tasks are demonstrated and
directions of current and future work are discussed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The history of neural network research is characterised by a
progressively greater emphasis paid to biological plausibility. The
evolution of neuron modelling with regard to the complexity of
computational units can be classified into three distinct gener-
ations (Maass, 1997). The third generation of neuron modelling
(spiking neurons) is based on the realisation that the precise
mechanism bywhich biological neurons encode and process infor-
mation is poorly understood. In particular, biological neurons com-
municate using action potentials also known as spikes or pulses.
The spatio-temporal distribution of spikes in biological neurons is
believed to ‘hold the key’ to understanding the brain’s neural code
(DeWeese & Zador, 2006).

There exists a multitude of spiking neuron models that can
be employed in spiking neural networks (SNNs). The models
range from the computationally efficient on the one hand to the
biologically accurate on the other (Izhikevich, 2004); the former
are typically of the integrate-and-fire variety and the latter are
of the Hodgkin–Huxley type. All the models in this range exploit
time as a resource in their computations but vary significantly in
the number and kinds of neuro-computational features that they
can model (Izhikevich, 2004). The extensive amount and variety of
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neuron models exist in acknowledgement of the fact that there is
a trade-off between the individual complexity of spiking neurons
and computational intensity.

In addition to the variety of neuron models, biological neurons
can have two different roles to play in the flow of information
within neural circuits. These two roles are excitatory and inhibitory
respectively. Excitatory neurons are responsible for relaying in-
formation whereas inhibitory neurons locally regulate the activity
of excitatory neurons. There is also experimental evidence to sug-
gest that the interaction between these two types of neuron is
responsible for synchronisation of neuron firing in the cortex
(Börgers & Kopell, 2003). Ongoing physiological experiments con-
tinue to illuminate the underlying processes responsible for the
complex dynamics of biological neurons.

The degree to which these complex dynamics are modelled in
turn limits the size and computational power of SNNs. Therefore,
it is imperative to determine which biological features improve
computational capability whilst enabling efficient description of
neuron dynamics. Ultimately neuro-computing seeks to imple-
ment learning in a human fashion. In any kind of algorithm where
human expertise is implicit, fuzzy IF-THEN rules can provide a lan-
guage for describing this expertise (Zadeh, 1965). In this paper,
the rationale for the distribution of biologically-inspired compu-
tational elements is prescribed by the implementation of fuzzy
IF-THEN rules. This rationale will demonstrate how strictly biolog-
ical models of neurons, synapses and learning can be assembled in
a network topology using fuzzy reasoning. Two benchmark clas-
sification datasets are used to demonstrate the capabilities of the
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topology. The benchmarks are the Fisher Iris andWisconsin Breast
Cancer datasets.

In Section 2, unsupervised and supervised learning methods,
dynamic synapses and receptive fields (RF) are reviewed. A brief
discussion of how fuzzy reasoning can provide a basis for struc-
turing the network topology in such a way that these various ele-
ments are suitably utilised follows. Section 3 introduces a generic
network topology and outlines the specific models and algorithms
used to implement fuzzy reasoning. Section 4 is concerned with
pre-processing of benchmark data, Fuzzy C-Means clustering and
thresholding to determine cluster size. Experimental results and
remarks for the complex non-linear Iris classification problem us-
ing a subjective cluster thresholding approach are presented in
Section 5, and results from the evolutionary optimisation of the
thresholding technique for theWisconsin Breast Cancer dataset are
presented in Section 6. A discussion of generalisation and themain
contribution of the work are outlined in Section 7, and lastly con-
clusions and future research directions are presented in Section 8.

2. Review

In this section, unsupervised and supervised learning methods,
dynamic synapses and RFs are reviewed. Modelling synapses is
an essential aspect of accurate representation of real neurons,
and one of the key mechanisms to reproducing the plethora of
neuro-computational features in SNNs. Learning in all generations
of neural networks involves the changing of synaptic weights
in the network in order for the network to ‘learn’ some input–
output mapping. From a biologically plausible point of view
synaptic modification in spiking neurons should be based on the
temporal relationship between pre- and post-synaptic neurons, in
accordance with Hebbian principles (Hebb, 1949). In fact, Hebbian
learning and its ability to induce long-term potentiation (LTP) or
depression (LTD) provides the basis for most forms of learning in
SNNs. Hebbian learning gains great computational power from the
fact that it is a local mechanism for synaptic modification but also
suffers from global stability problems as a consequence (Abbott &
Nelson, 2000).

2.1. Unsupervised learning

There are several learning algorithms that can be used to
evoke LTP or LTD of synaptic weights. STDP (Bi & Poo, 1998;
Markram, Lübke, 1997) is a re-establishment of Hebb’s causality
condition (Hebb, 1949) of strengthening the weight associated
with a presynaptic neuron only if there is a high probability that
it caused a postsynaptic spike, and weakening the connection
otherwise. More specifically, the STDP learning rule dictates that
long-term strengthening of the synaptic efficacy occurs when a
pre-synaptic spike (AP) precedes a post-synaptic one. Synaptic
weakening occurs with the reverse temporal order of pre and
postsynaptic spikes. The stability of STDP can be ensured by placing
limits in the strengths of individual synapses and a multiplicative
formof the rule introduces an adaptive aspect to learning, resulting
in progressively smaller weight updates as learning progresses.

Bienenstock, Cooper and Munro’s model (BCM) (Bienenstock,
Cooper, & Munro, 1982) compares correlated pre- and post-
synaptic firing rates to a threshold in order to decide whether
to induce LTP or LTD. The threshold slides as a function of the
post-synaptic firing rate in order to stabilise the model. Despite
criticism for its lack of biological basis (Abbott & Nelson, 2000),
BCM has been demonstrated to be related to STDP (Izhikevich &
Desai, 2003). In particular, by restricting the number of pairings of
pre- and post-synaptic spikes included in the STDP rule, the BCM
rule can be emulated using STDP.

BCM and STDP are of course unsupervised learning algorithms,
and as such they do not obviously lend themselves to applications
requiring a specific goal definition, since this requires supervised
learning.

2.2. Supervised learning

There are several methodologies to date for implementing
supervised learning in SNNs:

• SpikeProp (Gradient Estimation) (Bohte, Kok, & La Poutré,
2002).

• Statistical approach (Pfister, Barber, & Gerstner, 2003).
• Linear algebra formalisms (Carnell & Richardson, 2005).
• Evolutionary Strategy (Belatreche, Maguire, McGinnity, & Wu,

2003).
• Synfire Chains (Sougné, 2000).
• Supervised Hebbian Learning (Legenstein, Naeger, & Maass,

2005; Ruf & Schmitt, 1997).
• Remote Supervision (Kasiński & Ponulak, 2005).

For a detailed review see Kasiński and Ponulak (2006).
SpikeProp (Bohte et al., 2002) is a gradient descent training al-

gorithm for SNNs that is based on backpropagation. The discon-
tinuous nature of spiking neurons causes problems with gradient
descent algorithms, but SpikeProp overcomes this issue by only al-
lowing each neuron to fire once and by training the neurons to fire
at a desired time. However, if weight updates leave the neuron in
a state such that it will not fire, the algorithm cannot restore the
neuron to firing for any new input pattern. Additionally, since each
neuron is only allowed to fire once, the algorithm can only be used
in a time-to-first-spike coding scheme which means that it cannot
learn patterns consisting of multiple spikes.

By employing a probabilistic approach to the Hebbian interac-
tion between pre- and post-synaptic firing, it is possible to pro-
duce a likelihood that is a smooth function of its parameters (Pfister
et al., 2003). The aim of this, of course, is that this allows gradient
descent to be applied to the changing of synaptic efficacies. This
statistical approach employs STDP-like learning windows and an
injected teacher current. Consequently, the method has been de-
scribed (Kasiński & Ponulak, 2006) as a probabilistic version of Su-
pervised Hebbian learning (Legenstein et al., 2005; Ruf & Schmitt,
1997). Experiments with this approach have been limited to net-
works consisting of only two spikes, so it is difficult to know how
robust the technique would be for larger networks.

Linear algebra formulisms involving definitions of inner prod-
uct, orthogonality and projection operations for spike time series
form the backbone of Carnell and Richardson’s work (Carnell &
Richardson, 2005). The Gram–Schmitt process is used to find an or-
thogonal basis for the input time series subspace, and this is then
used to find the subspace for the desired output. A batch style it-
erative process is described that seeks to then minimise the error
between target and actual outputs by projecting the error into
the input subspace. The Liquid State Machine (LSM) (Maass,
Nätschlager, & Markram, 2002) is used for the experiments. Suc-
cessful training is dependent on the variability of input spikes, but
since the training requires batch learning themethod is unsuitable
for online learning (Carnell & Richardson, 2005).

Evolutionary strategies (ES) have been applied as a form of
supervision for SNNs (Belatreche et al., 2003). ES differ fromgenetic
algorithms in that they rely solely on the mutation operator. The
accuracy of the resulting SNN provides the basis for determining
the fitness function and the ES population was shown to produce
convergence to an optimal solution. The learning capabilities of
the ES were tested with the XOR and Iris benchmark classification
problems. The Spike Response Model was used to model the
spiking neurons in a fully connected feed-forward topology. A
limitation of this approach is that only the time-to-first-spike is
considered by the ES (Belatreche et al., 2003). Additionally, as
with all evolutionary algorithms the evolutionary process is time-
consuming and this renders them unsuitable for online learning.

A synfire chain (SFC) (Sougné, 2000) is a feed-forward multi-
layered topology (chain) in which each pool of neurons in the
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