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In this paper, we revisit the concept of virtualization. Virtualization is useful for understanding and
investigating the performance/price and other trade-offs related to the hardware design space. Moreover,
it is perhaps the most important aspect of a hardware design space exploration. Such a design space
exploration is a necessary part of the study of hardware architectures for large-scale computational
models for intelligent computing, including Al, Bayesian, bio-inspired and neural models. A methodical
exploration is needed to identify potentially interesting regions in the design space, and to assess
the relative performance/price points of these implementations. As an example, in this paper we
investigate the performance/price of (digital and mixed-signal) CMOS and hypothetical CMOL (nanogrid)
technology based hardware implementations of human cortex-scale spiking neural systems. Through
this analysis, and the resulting performance/price points, we demonstrate, in general, the importance
of virtualization, and of doing these kinds of design space explorations. The specific results suggest that
hybrid nanotechnology such as CMOL is a promising candidate to implement very large-scale spiking
neural systems, providing a more efficient utilization of the density and storage benefits of emerging
nano-scale technologies. In general, we believe that the study of such hypothetical designs/architectures
will guide the neuromorphic hardware community towards building large-scale systems, and help guide

Hardware-spectrum

research trends in intelligent computing, and computer engineering.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In spite of the transistor bounty of Moore’s law, there is a
large class of problems that computers still do not solve well (Gao
& Hammerstrom, 2007; Hammerstrom, 2008). These “boundary
problems” involve the transformation of data across the bound-
ary between the real world and the digital world (Hammerstrom,
2008). Computer vision, speech recognition, and robotics are ex-
amples of these kinds of problems, which occur wherever a com-
puter is sampling and acting on real world data (Hammerstrom,
2008).

Although there has been progress in all approaches to
intelligent computation, we still do not have robust solutions
that even remotely approach the capabilities of biological systems
(Hammerstrom, 2008). Consequently, a number of researchers are
returning to neuroscience in search for inspiration for new kinds
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of algorithms for intelligent computing. In collaboration with the
neuroscience community, several groups are looking to create
increasingly more sophisticated abstract models of neural circuits,
and then apply these models to real applications.

Many of these groups? are also studying hardware/software im-
plementations of large-scale networks inspired by neuroscience,
which may provide a better understanding of the high-level com-
putational principles of the cortex (Ananthanarayanan & Modha,
2007; Johansson & Lansner, 2007; Markram, 2006; Schemmel,
Meier, & Mueller, 2004). In addition, such large-scale implemen-
tation platforms allow the testing of certain hypotheses related
to cortical theories (Ananthanarayanan & Modha, 2007; Mehrtash
et al., 2003; Schemmel, Fieres, & Meier, 2008).

As a result, the hardware implementation of large-scale
neural networks is an excellent candidate application for the
high density computation and storage possible with current and
emerging semiconductor technologies (Beiu, 2007). In addition,
such technologies may lead to new computing architectures,

2 DARPA's SyNAPSE program, which is currently in progress, is probably the most

ambitious project so far; involving the development of cortex-scale neuromorphic
hardware systems, using nanoelectronics based novel components.
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as we learn more about the operation of basic neural circuits
(Ananthanarayanan & Modha, 2007).

Within the general area of silicon architectures for emulating
these models, in this paper we investigate the performance/price
trade-offs for various silicon implementations of human cortex-
scale spiking neural network. Part of the motivation for this work is
that the field of neuromorphic hardware has, so far, concentrated
only on a limited region of the design/virtualization spectrum,
that is, primarily the end-points of the virtualization spectrum, as
is discussed below. And it has been argued that the end-points
constitute the most cost-effective regions of the design space.
In this paper we hope to motivate a wider range of analysis in
exploring architectural trade-offs across the spectrum.

This paper also highlights some important issues related to
large-scale implementation of these models and the complex
relationships between analog, mixed-signal, and digital imple-
mentations as well as between standard CMOS and the most
promising nano-scale devices, and nanogrid structures such as
CMOL (Likharev & Strukov, 2005). Another very important issue
that is not addressed here, but will be investigated in future papers
is the basic cost-performance trade-offs in very neural like models
versus more highly abstracted building blocks, such as discussed in
the work of Albus (2008), George and Hawkins (2005) and Zaveri
and Hammerstrom (2010).

Neural models are massively parallel so there is a significant
opportunity for a huge range of virtualization, much more so
than with traditional computational models (Gao & Hammerstrom,
2007). Since it promises the highest performance, one would
think that a direct implementation, i.e., hardwiring the algorithms
directly into silicon with little or no virtualization (Gao &
Hammerstrom, 2007 ), would be the most cost-effective. However,
depending on the dynamic behavior of the models, it is possible
for much of the hardware to be idle most of the time (Gao &
Hammerstrom, 2007). Consequently, factors such as differential
hardware costs and model dynamics have a significant impact on
the virtualization “sweet spot”.

It has been shown that even with connectivity patterns that
are much sparser than cerebral cortex, the use of dedicated
metal lines for each connection quickly overwhelms the available
connection resources in a typical silicon process (Bailey &
Hammerstrom, 1988). Consequently the analog-VLSI (aVLSI)
neuromorphic engineering community, which relies extensively
on direct analog computation, uses multiplexed communication
generally in the form of the Address Event Representation (AER)
(Boahen, 2000; Schemmel et al., 2008). It has also been shown that
for long range connections, storing addresses in a RAM is more
efficient then dedicating a metal line to each connection (Bailey
& Hammerstrom, 1988).

In our quest to create platforms for implementing various
aspects of intelligent computing, the question posed by the work
presented here is whether other aspects of the computational
model can also be multiplexed to improve performance/price. To
begin to answer this question, this paper presents an architectural
space exploration for a certain family of massively parallel
computational models, where, given a certain set of hardware
options, and a model that has a certain structure and computations
associated with it, including certain dynamic characteristics, what
is a reasonably close, but not necessarily optimal, hardware
configurations, and where does those configurations lie on the
virtualization spectrum? We will not be using the term “optimal”
since it is difficult to prove hardware implementations to be
optimal—and will use the term “sweet spot” instead.

In this paper, Section 2 discusses the concept of virtualiza-
tion, shows a simple example, and presents the “virtualization
spectrum”. Section 3 presents the neural model that is being im-
plemented. Section 4 discusses various hardware design configu-
rations for a processing node, and its performance/price analysis.

And Section 5 presents the results of the performance/price analy-
sis, summarizes them, and presents some general conclusions.
However there are some caveats that need to be discussed first:

- Our computational model is not special, we assumed that it was
reasonably cortical-like, but many assumptions can be ques-
tioned; some of these assumptions and results, for example,
may not be applicable to “front end” vision processing mod-
els, where activation may be less sparse, and communication
is more local (Hammerstrom, 2008).

- Our hardware assumptions are not special, we made reasonable
assumptions about existing, or relatively near-term projected
CMOS and the existence of a reasonably implementable CMOL-
like nanogrid structures.

- The specific architectural results of the analysis only hold for
the specific model and hardware assumptions that were made
here—different assumptions will change the results and the
location of the sweet spot on the virtualization spectrum. In
some cases, the results are only ballpark estimates, and should
not be considered as a comprehensive judgment.

- The goal of this work was to define and present the concept of
virtualization, and then do an architectural analysis based on
that concept. Our hope is that this type of work will be useful
across a broader selection of models and hardware structures.
As far as we know, there has been no discussion of such trade-
offs in this design space and no similar study of the hardware
implementation of biologically inspired models that covers as
broad a range of hardware structures. What has been more
common were proposals for hardware structures for emulating
biologically inspired computing that have not had the benefit
of the kind of scaling analysis proposed here. We also believe
that more analyses such as these are needed to guide research
in models, hardware structures, and architecture.

As computational models and nano-scale computing structures
evolve, we intend to regularly redo this analysis to factor in such
developments.

2. Virtualization
2.1. Asimple example of virtualization

An important issue in implementing biologically inspired
models in silicon is the degree of virtualization utilized by the
underlying hardware. Virtualization is defined as “the degree
of time-multiplexing of the ‘components’ of computation and
communication via hardware resources” (Gao & Hammerstrom,
2007; Gao, Zaveri, & Hammerstrom, 2008). The term, as used here
should not be confused with virtual machines as currently used in
the IT industry.

A simple example to demonstrate the concept is shown in Fig. 1,
where the goal is to architect a hardware system for emulating 100
neurons. Assume a simple model for the neuron given by y;(t) =
> v wigeii(t — ), where y; is the output of neuron i, &;(t — ¢;) is
the postsynaptic potential at input j, and wy; is the synaptic weight
linking input j to neuron i.

The basic arithmetic operations in this model are multiplication
and addition (sometimes referred to as multiply-accumulate).
When implementing these operations in digital hardware, we
would require one digital adder and one digital multiplier, which
we refer to as a Multiply-Accumulate Component (MAC). A simple
implementation would be where each neuron uses one MAC,
resulting in a total of 100 such MACs, as shown in Fig. 1(b).
For explanatory purposes this is assumed to be a minimally
virtualized implementation, an absolute minimum virtualization
implementation would have a multiplier at each synapse and an
accumulator at each branch in the dendritic tree. And, in fact, using
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