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a b s t r a c t

Learning large Bayesian networks (BN) from data is a challenging problem due to the vastness of the
structure space. An effective way to turn this problem affordable is the use of super-structures—SS
(undirected graphs that contain the BN skeleton). However, the literature has been lacking of specialized
methods for estimating SS. We present here two algorithms intended for such purpose in the hybrid
approach of BN structure learning. The first one, called Opt01SS, learns SS using only zero-and-first-order
conditional independence (CI) tests in a way that allows dealing with the presence of approximate-
deterministic relationships and inconsistent CIs, commonly found in small samples. The second
algorithm, called OptHPC, is a computational optimized version of the recent HPC algorithm (De Morais
and Aussem 2010, [17]) that showed an attractive accuracy for SS recovery. Results on various benchmark
networks showed that the proposed algorithms achieve a balance between sensitivity and specificity
clearly more favorable for the task of SS estimation than several representative state-of-the-art methods.
The computational cost was also found to be reasonable, being Opt01SS one of the most competitive
among the analyzed algorithms.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

A Bayesian Network (BN) is a powerful tool for representing
complex probabilistic knowledge. It has been widely applied in a
variety of domains, including medicine [1], bioinformatics [2],
economics [3], among others [4]. The wide popularity of this tool is
largely due to its great expressive power, allowing the simultaneous
analysis of complex relationships between many variables. The knowl-
edge in a BN is intuitively encoded via a directed acyclic graph — DAG
(model structure), where the nodes represent random variables of
a problem and the edges represent direct dependencies among
variables.

Frequently, the construction of the model structure is too
complex (if not impossible) for humans, requiring the estimation
of it from training data. This is a challenging problem, since exact
inference of the DAG is a NP-hard problem [5]. Several methods
have been proposed to this end over the last two decades, being two
approaches dominants: the constraint-based (CB) methods [6] and
the score-and-search (SS) methods [7]. In CB methods, the structure
is found via conditional independence (CI) tests. In SS methods, the
network is found by optimizing a function that measures how well
the network fits the data. Both approaches have drawbacks. CB
methods are inaccurate in dense networks and few data because
the CI tests become unreliable in such cases. SS methods are more
accurate, but they do not scale up to high-dimensional problems

due to a super-exponential growth of the search space [8]. Hybrid
methods have emerged to overcome such limitations [9–12]. In this
approach, a super-structure (an undirected graph assumed to con-
tain all true edges) is rapidly estimated with a CB approach, which is
then used in a subsequent SS phase to constraint the search space, i.
e., the final DAG is searched considering only the edges on that
super-structure.

Despite the scalability gain with the hybrid approach, some
concerns has been raised recently regarding the suitability of
current methods used to learn super-structures [11,12]. Most of
such methods were not specifically devised for that purpose. Some
are found as subroutines in CB approaches, responsible for getting
the BN skeleton to be further directed [6,13,8,14]. Some other
methods were designed for learning the local structure around
a target variable [10,15] (e.g. for classification applications).
The main concern of these methods when used as super-structure
estimators is that they give equal importance to the rate of false-
negative (FNE) and false-positive errors (FPE) (most of them are
correct in the sample limit). However, for a hybrid approach is more
important to maintain the FNE rate as low as possible in the super-
structure estimation phase, since it sets the lower bound of the FNE
rate of the whole learning process [11] (the rate of false-positive
errors can be lowered in the SS phase). Based on this, it was
suggested recently [11,12] that the problem of super-structure
estimation should be addressed as a whole, since it is a key step
to improve the accuracy and scalability of the inference of BN
structures from data.

In this paper, we present two optimized CB methods for the
task of super-structure estimation: the Optimized Zero-First-Order
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Super-Structure (Opt01SS) and the Optimized Hybrid Parents and
Children1 (OptHPC). Opt01SS is constructed to get a safe super-
structure in situations of limited data. For this end, only zero and
first order CI tests are performed in a way that facilitates the
identification of promising edges under the presence of approx-
imate deterministic relationships (ADRs) [17] and inconsistent
CI tests [18], common problems in small sample scenarios. The
second algorithm, OptHPC, is a computational optimization of the
recent Hybrid Parents and Children algorithm (HPC) [17], a sound
local method proposed to ameliorate the large FNE rates that most
CB methods present in small data. Among the optimizations are
the use of a cache and a global graph to store and share zero-first
order CI computations, which aid to gain efficient in the super-
structure learning (a direct application of HPC to this task leads to
many repeated computations). The performance of the algorithms
is experimentally compared against various state-of-the-art meth-
ods, including the HPC, the Max-Min Parents and Children
(MMPC) [10], the Heuristics PC algorithm (HeuPC)2 [8], the GetPC
algorithm [15], and the conventional zero-first-order CI tests
(01SS) [9]. Results on benchmark networks show the suitability
of our algorithms in the super-structure estimation task.

In the next section we give a brief revision of the main principles
and concepts used in the paper. Sections 3 and 4 describe respec-
tively the Opt01SS and OptHPC algorithms. Section 5 details our
experimental setup and analyzes the obtained results. Finally, Section
6 presents our conclusions.

2. Preliminaries

Only discrete random variables and complete datasets are
considered in this paper. We use upper-case, X, to denote a single
variable, and the same lower-case, x, for its value. For a variable
set, we use upper-case bold-face, Z, and lower-case bold-face, z,
for a particular assignment. We use X⊥YjZ to denote that variables
X and Y are CI given a variable set Z.

Formally, A BN [19] is a model 〈G;Θ〉 for representing the joint
probability distribution P of a set of random variables
U¼ fX1;…;Xng. G is a directed acyclic graph — DAG (model
structure) whose nodes have a one-to-one correspondence to
the random variables in U and edges represent conditional
dependence relationships among variables. Θ is a set of para-
meters that defines for each node Xi a conditional probability
distribution PðXijPaiÞ, where Pai denotes the parents of Xi in G. All
BN satisfies the Markov condition (MC) [19]: every node Xi is
conditionally independent on any subset of its non-descendants
given its parents Pai. From this condition, the joint distribution
over U can be efficiently factored as: PðUÞ ¼∏Xi∈UPðXijPaiÞ.

A BN encodes a set of CI statements that can be identified from
its DAG by using the d-separation criterion [19]: two nodes X and Y
are d-separated by a subset of nodes Z in a DAG G, denoted by
DsepGðX;Y jZÞ, if every path between X and Y is blocked by Z. A path
l is blocked by Z if: (i) Z contains a node V that is in l in the form
U-V-W or U←V-W; or (ii) l constains a ‘collider’ U-V←W
with V and all its descendants out of Z. Each d-separation,
DsepGðX;Y jZÞ, readed from a BN DAG G implies a CI in P in the
form X⊥Y jZ. The converse, however, is not necessarily true. A BN
that entails all and only the CIs in P by the d-separation criterion (i.
e., DsepGðX;Y jZÞ⇔X⊥Y jZ ) is said to be a faithful BN of the
distribution P. A faithful distribution P is one for which exists a
faithful BN 〈G; �〉 and G is said to be a perfect map of P.

All CIs readable from a BN with the d-separation criterion are
outlined by its skeleton (the graph resulting of undirecting the
DAG) and v-structures, i.e., colliders U-V←W with U and W being
not adjacent in the DAG (U and W are called spouses). Thus, two
BNs with equal skeletons and v-structures encode the same CIs,
they are said equivalent models [20].

The Markov blanket of a variable X in a BN, MBX , is the minimal
set of variables that make X independent from the rest of variables
in the BN, given MBX . In a faithful BN, the MB of a variable X is
composed by the parents of X, the children of X (denoted by ChX)
and the spouses of X (denoted by SPX).

We adopt the super-structure concept [11]: a sound or complete
super-structure of a DAG G is any undirected graph S that contains
the skeleton of G, otherwise it is said incomplete.

3. Optimized zero-first-order super-structure (Opt01SS)

Opt01SS was conceived to perform a safe and efficient estimation
of super-structures in limited data situations. Two main problems
make the learning task challenging when the sample is small:
(i) presence of approximate deterministic relationships (ADRs)3

[21,17]; and (ii) inconsistency in CI testing [18]. The first problem
leads to commit errors in the learning process due to the unreliability
of CI tests under ADRs [17]. To illustrate this, consider the structure in
Fig. 1, in which Z and X have an ADR and X and Y have a relationship
with weak support on the data. If a CI test is performed between these
latter variables conditioned on Z, the most likely result would be
Y⊥XjZ, since the values of Z exert such strong influence on X that hide
the dependency of Y on X (because the very few samples supporting
this dependency), thus missing the edge Y-X.

The second problem is originated by the uncertainties of the
small sample. Such uncertainties are reflected in the learning
process as inconsistent conditional independence and dependence
statements — CIDS [18] (statements that cannot be simultaneously
represented in a perfect map). To exemplify, consider a BN:
X-Y←Z, in which, due to the scarcity of the data, two inconsistent
CIs are detected: X⊥ZjY and Y⊥ZjX (the rest of CI tests give
dependency). Most CB methods would end learning only the edge
X−Y , since they normally remove all edge associated with a CI
[6,13,8,14]. If such methods are used as super-structure estimators
in a hybrid learning approach, the true network would never be
achieved in the SS stage.

To overcome the referred problems, Opt01SS (Algorithm 1)
implements 3 phases, the first two face the ADR problem and the
third one faces the CI inconsistencies. Phase 1 (1–5 lines) begins
with a fully connected undirected graph S and iteratively remove
edges with marginal independence (as in PC and HeuPC [6,8]).
Function Dep (Table 1) implements the CI testing, returning the
degree of dependence, depX;Y jZ, between variables X and Y given

True network 
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X

Y W Z
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due to the ADR 

Fig. 1. Example to illustrate how an ADR (X and Z) may hamper the detection of a
true edge (Y−X) that has a weak support on the data. This edge is missed when
testing Y⊥XjZ and it is accepted (due to the strong influence that Z exert on X and
the faint dependency between X and Y).

1 Some preliminary results of OptHPC were presented in [16].
2 In the original paper the Heuristics PC algorithm is abbreviated as Algori-

thmHPC, but here we call it as HeuPC to avoid confusion with the HPC, another
algorithm referenced in the paper.

3 An ADR [17] is a strong association between two variables, where only a small
portion of samples exhibit a non-deterministic relation for that variables.
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