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a b s t r a c t

One of the main learning tasks in machine learning is the one of classifying data items. The basis for such
a task is usually a training set consisting of labeled patterns. In real-world settings, however, such labeled
data are usually scarce, and the corresponding models might yield unsatisfying results. Unlabeled data,
on the other hand, can often be obtained in huge quantities without much additional effort. A prominent
research direction in the field of machine learning is semi-supervised support vector machines. This type
of binary classification approach aims at taking the additional information provided by the unlabeled
patterns into account to reveal more information about the structure of the data at hand. In some cases,
this can yield significantly better classification results compared to a straightforward application of
supervised models. One drawback, however, is the fact that generating such models requires solving
difficult non-convex optimization tasks. In this work, we present a simple but effective gradient-based
optimization framework to address the induced problems. The resulting method can be implemented
easily using black-box optimization engines and yields excellent classification and runtime results on
both sparse and non-sparse data sets.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important machine learning tasks is classification.
If sufficient labeled training data are given, there exists a variety of
techniques like the k-nearest neighbor-classifier or support vector
machines (SVMs) [2,3] to address such a task. However, labeled data
are often rare in real-world applications. One active research field in
machine learning is semi-supervised learning [4,5]. In contrast to
supervised methods, the latter class of techniques takes both labeled
and unlabeled data into account to construct appropriate models.
A well-known concept in this field is semi-supervised support vector
machines (S3VMs) [6–8], which depict the direct extension of support
vector machines to semi-supervised learning scenarios. The key idea is
depicted in Fig. 1: The aim of a standard support vector machine
consists in finding a hyperplane which separates both classes well

such that the margin is maximized. It is obvious that, in case of lack of
labeled data, suboptimal models might be obtained, see Fig. 1(a). Its
semi-supervised variant aims at taking the unlabeled patterns into
account by searching for a partition (into two classes) such that a
subsequent application of a modified support vector machine leads to
the best result. Under certain conditions, unlabeled data can provide
valuable information, see Fig. 1(b). While being very appealing from a
practical point of view, semi-supervised support vector machines lead
to a combinatorial optimization task that is difficult to approach.

The original problem formulation of semi-supervised support
vector machines was given by Vapnik and Sterin [8] under the
name of transductive support vector machines. From an optimiza-
tion point of view, the first approaches have been proposed in the
late nineties by Joachims [7] and Bennet and Demiriz [6]. In
general, there are two lines of research, namely (a) combinatorial
and (b) continuous optimization schemes. The brute-force
approach (which tests every possible partition), for instance, is
among the combinatorial schemes since it aims at directly finding
a good assignment for the unknown labels.

1.1. Related work

For both the combinatorial and the continuous research direc-
tions, a variety of different techniques has been proposed in recent
years. The former one is usually addressed by label-switching
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☆This work depicts an extended version of the associated conference paper that
has been presented at the 1st International Conference on Pattern Recognition
Applications and Methods [1]. It contains additional theoretical derivations related
to incorporating an offset term and a balancing constraint. Moreover, the experi-
mental evaluation has been extended by adding two more semi-supervised
competitors as well as a variety of high-dimensional sparse data sets.
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strategies [7,9,10] or by reformulating the original task as semi-
definite programming problem [11,12]. Further, since both real and
integer variables are present in the optimization task (see below),
mixed-integer programming solvers can be applied to compute
optimal solutions up to machine precision [6]. Another way to
obtain optimal solutions are branch and bound frameworks, see
Chapelle et al. [13] for an appropriate algorithm.

The continuous optimization perspective leads to a real-valued
but non-convex task (see below). Among the first schemes that
considered this perspective was the gradient descent framework
of Chapelle and Zien [14], which was based on the replacement of
the original loss functions by appropriate surrogates. Similar ideas
led to the continuation framework [15], to deterministic annealing
methods [16,10], and to the use of the (constrained) concave–
convex procedure [17–19]. An approach closely related to the one
proposed in this work is the quasi-Newton framework proposed
by Reddy et al. [20]; however, they do not consider differentiable
surrogates and therefore apply more complicated sub-gradient
methods.

Despite the methods mentioned above, a variety of other semi-
supervised support vector machine variants have been proposed
in the literature including, e.g., graph-based methods [21]. Due to
lack of space, we refer to Chapelle et al. [4,22] and Zhu and
Goldberg [5] for comprehensive surveys. It is worth pointing out
that support vector machines can also be extended to unsuper-
vised learning settings (without any labeled patterns at all) in a
very similar kind of way. This variant is known asmaximum margin
clustering and has received a considerable interest in recent years
[23–28].

1.2. Contribution

In this work, we will show that quasi-Newton schemes [29]
along with direct computational shortcuts for sparse and non-
sparse data depict simple but very effective approaches for the
task at hand. In particular, we make use of an appropriate
differentiable surrogate of the original objective and show that
one can directly obtain computational shortcuts for non-sparse
data (and arbitrary kernels) via the subset of regressors [30]
scheme, and for sparse data (and the linear kernel) by taking
advantage of the explicit structure of the objective function and its
gradient. The induced optimization approaches are conceptually
very simple and can be implemented easily via standard black-box
optimization tools.1

As part of the contribution, we provide a detailed experimental
evaluation and compare both the classification and runtime
performances of our implementation with state-of-the-art semi-
supervised support vector machine implementations on a variety

of sparse and non-sparse data sets. The results clearly indicate the
usability and effectiveness of our implementation.

1.3. Notations

We use ½m� to denote the set f1;…;mg. Given a vector y∈Rn, we
use yi to denote its i-th coordinate. Further, the set of all m� n
matrices with real coefficients is denoted by Rm�n. Given a matrix
M∈Rm�n, we denote the element in the i-th row and j-th column
by ½M�i;j. For two sets R¼ fi1;…; irgD ½m� and S¼ fk1;…; ksgD ½n� of
indices, we use MR;S to denote the matrix that contains only the
rows and columns of M that are indexed by R and S, respectively.
Moreover, we setMR;½n� ¼MR. All vectors are assumed to be column
vectors and the superscript T is used to denote the transpose of a
matrix or a vector, i.e., yT is a row vector and MT∈Rn�m is the
transpose of the matrix M∈Rm�n.

2. Classification task

In the following, we will consider a set Tl ¼ fðx1; y′1Þ;…; ðxl; y′lÞg
of labeled patterns and a set Tu ¼ fxlþ1;…; xlþug⊂X of unlabeled
training patterns that belong to an arbitrary set X.

2.1. Support vector machines

The concept of support vector machines can be seen as instance
of regularization problems of the form

inf
f∈H

1
l
∑
l

i ¼ 1
Lðy′i; f ðxiÞÞ þ λ∥f∥2H

( )
; ð1Þ

where λ40 is a fixed real number, L : Y � R-½0; ∞Þ is a loss
function and ∥f ∥2H is the squared norm in a so-called reproducing
kernel Hilbert space HDRX ¼ ff : X-Rg induced by a kernel func-
tion k : X � X-R [3]. Here, the first term measures the loss caused
by the prediction function on the labeled training set and the
second one penalizes complex functions. Plugging in different loss
functions leads to various models; one of the most popular choices
is the hinge loss Lðy; tÞ ¼maxð0;1−ytÞ, which yields the original
definition of support vector machines [3,31], see Fig. 2(a).2

2.2. Semi-supervised SVMs

Given the additional set Tu ¼ fxlþ1;…; xlþug⊂X of unlabeled
training patterns, semi-supervised support vector machines [6–8]
aim at finding an optimal prediction function for unseen data
based on both the labeled and the unlabeled parts of the data.
More precisely, we search for a function f n∈H and a labeling vector
yn ¼ ðyn

lþ1;…; yn

lþuÞT∈f−1;þ1gu that are optimal with respect to
minf∈H; y∈f−1;þ1gu Jðf ; yÞ where

Jðf ; yÞ ¼ 1
l
∑
l

i ¼ 1
L1ðy′i; f ðxiÞÞ þ

λ′
u

∑
lþu

i ¼ lþ1
L1ðyi; f ðxlþiÞÞ þ λ∥f∥2H: ð2Þ

Here, λ′, λ40 are user-defined parameters and L1 : R� R-½0; ∞Þ a
loss function. Thus, the main task consists in finding the optimal
assignment vector y for the unlabeled part; the combinatorial
nature of this task renders the optimization problem difficult
to solve.

Fig. 1. The concepts of support vector machines and their extension to semi-
supervised learning settings. Labeled patterns are depicted as red squares and blue
triangles and unlabeled patterns as black points, respectively: (a) SVM, (b) S3VM.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

1 The code can be obtained from the authors upon request.

2 The latter formulation does not include a bias term b∈R, which addresses
translated data. For complex kernel functions like the RBF kernel, adding this bias
term does not yield any known advantages, both from a theoretical and practical
point of view [3]. In the remainder of this work, we will mostly omit the bias term
for the sake of exposition; however, such a bias term can be explicitly incorporated
into the optimization frameworks presented in this work, as we will show below.
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