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a b s t r a c t

Sequential projection pursuit (SPP) is a useful tool for revealing interesting structures hidden in high-
dimensional data. SPP constructs sequentially the bases of a low-dimensional space where the projected
data evidence such structures. Genetic algorithms (GAs) are promising finders of these bases, but their
performance is determined by the choice of the crossover operator. Until now it is not clear which
operator is more suitable for SPP. In this paper we compare the performance of eight crossover operators:
three available in literature (arithmetic, single-point and multi-point) and five newly proposed here (two
hyperconic, two fitness-biased and one extension of arithmetic crossover). The results on five benchmark
datasets showed that the proposed hyperconic operators have the best performance in finding high-
fitness projections. The performance of a canonical GA with one of these hyperconic operators was
compared against two representative SPP optimizers, the PSO and the RSSA algorithms. We found that
our GA with the hyperconic operator tends to find better solutions than the other methods at different
numbers of fitness computations. These results suggest that the optimization of SPP can be improved
with GAs by taking advantage of the exploratory capabilities of the proposed hyperconic operators.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The collection of data sets with large amounts of measured
features is becoming increasingly common in many industrial and
scientific areas. This makes dimension reduction an active research
topic in data mining, machine learning and statistics. Projection
pursuit (PP) [1,2] is a framework of methods proposed to deal with
such high-dimensional data sets that has become very popular in the
statistical literature. PP faces the curse of dimensionality by searching
for “interesting” low-dimensional projections of the data, where the
interestingness of the projections is assessed by a pre-defined
function, known as projection pursuit index (PP index). Thus, the most
interesting projection spaces are found by optimizing this function.

A wide range of data-mining problems can be tackled with
PP [3], depending on the PP index used. For example, PP can take
the form of the popular PCA method (principal component
analysis) when the variance of the projected data is used as the
PP index [3]. Several PP indices have been proposed for different
applications (for reviews see [4–7]). Indeed, there are PP indices
suitable for cluster analysis [8,9], classification [4,10], feature
selection [11] and regression analysis [12].

One of the major difficulties when working with PP is the
optimization of the index function [7]. Most of the seminal work in
this area were carried out in the context of exploratory projection

pursuit (EPP), where the target space was limited to, at most, three
dimensions [2,13–16,9]. Gradient-based methods were initially pre-
ferred [17,18], however, such methods were very susceptible to being
trapped in local optima, thereby capturing projections of low rele-
vance [2]. Further developments were carried out to alleviate such
problems (e.g. [2,14,8]), but the difficulty to scale beyond 3D projec-
tions remained (mainly due to computational constraints in comput-
ing PP indices in such spaces). It was only after the emergence of the
sequential projection pursuit (SPP) method [19] that the dimension-
ality constraint was effectively circumvented. In SPP, the bases of the
projection space (called PP factors) are sought sequentially instead of
all simultaneously. Each PP factor is obtained by optimizing a one-
dimensional PP index over residual data (data resulting from remov-
ing the structure found in the previous PP factors). In this way, a
m-dimensional optimization problem is converted intom problems of
one dimension. SPP opened up new possibilities for PP, such as
feature selection [11] and feature extraction for machine learning [6].

The original optimizer proposed for SPP was based in a canonical
genetic algorithm (GA), where the candidate PP factors are repre-
sented as binary strings and typical crossover and mutation operators
are used to evolve. An alternative optimizer was proposed by Webb-
Robertson et al. [20], the random scan sampling algorithm (RSSA),
arguing that the GA optimizer for SPP was slow in getting the PP
factors. Other global methods such as simulated annealing (SA) [21]
and particle swarm optimization (PSO) [22,23] have been proposed
for optimizing SPP. However, based on the success that GA methods
have shown in many difficult real-world problems [24], we believe
that their potential was under explored as optimizers for SPP.
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Genetic algorithms have some desirable features attractive for SPP,
such as [25]: (1) GAs can search the solution space (that is known to
be multi-modal) in a parallel and multi-directional way, giving more
chance to find highly informative projections; (2) at any time we can
take a solution, which gets better with time; (3) one can control the
diversity of the population, which can be useful for EPP since many
alternative solutions are required for inspection; and (4) GAs can be
straightforwardly implemented in parallel and distributed platforms,
expanding the applicability of PP to problems with huge data sets.
Despite these desirable features, the performance of a GA is strongly
influenced by the choice of the crossover operator, since this
constitutes the primary search mechanism of the GA, responsible
for the rapid exchange of useful information among solutions to
locate better solutions [25]. The crossover operator used in the
original SPP was a generic operator, which seems to give reasonable
results in mid-range problems [19,11]. However, it is unknown
whether other operators could perform better in the optimization
of PP factors for SPP.

Moving in this direction, we present in this paper a comparative
experimental study of eight crossover operators: three currently used
in SPP and PPEA (arithmetic crossover and single and multi-point
crossover) and five new operators (one single extension of the
arithmetic crossover, two hyperconic crossovers and two fitness-
biased crossovers). First, we assess the performance of the crossover
operators in a prototypical GA by measuring the mean fitness of the
population at different stages of evolution and the converged fitness
and number of generations needed to achieve convergence. In
addition, the influence of the evolutionary pressure in the perfor-
mance of the different operators is analyzed. Second, we compare the
performance of the best GA (the GAwith the best crossover operator)
against two alternative state-of-the-art optimizers for SPP: the RSSA
[20] and the PSO used in the SPP context by [7]. This evaluation
determines the efficiency of the optimizers under similar amounts of
computation units (number of PP index calls). The study was carried
out on five benchmark datasets of increasing dimensionality ranging
from 13 to 743 variables. The results suggest that we can improve the
performance of the GA optimizers for SPP with the proposed
operators, even at levels above those of the other methods discussed.

The paper is organized as follows. Section 2 introduces some
important concepts of PP, SPP, and GAs. Section 3 describes the
crossover operators studied. Section 4 presents the experimental
setup. The results and discussions are presented in Section 5.
Finally, our conclusions are presented in Section 6.

2. Background

2.1. Projection pursuit

The projection pursuit concept was formally introduced in the
paper of Friedman and Tukey [1], although the seminal ideas were
originally posed by Kruskal [26]. To describe the concept of PP
assume that the data set is arranged in a n� p matrix X with
n instances and p attributes or variables. PP seeks a m-dimensional
projection space (mop), defined by the orthonormal bases
A∈Rp�m, where the projected data X � A exposes information of
interest. The degree of interestingness of the projection is mea-
sured by the function I, called the projection pursuit index
(PP index). Thus, PP can be formulated as the optimization problem

An ¼ arg max
A

fIðX � AÞg

s:t: AT � A¼ I: ð1Þ

The choice of the PP index is a key consideration. A great deal of
research has been centered on the construction of a globally useful
and robust index, but the effectiveness of an index is often

dependent on the application and characteristics of the given
dataset [6]. One dominant consideration in developing PP indices
has been the so-called affine invariance [5]. A PP index I is said to
be affine invariant if IðXÞ ¼ IðsXþ vÞ for a nonsingular linear
transformation s and a constant vector v. Thus, affine invariance
ensures that changes in scale and location of the projected data do
not affect the index value.

A common approach to insure affine invariance is sphering the
original data matrix X to have zero mean and identity covariance
matrix. This can be done by the following transformation [14]:

Z¼ Λ−1=2Q ðX−E½X�Þ ð2Þ
where Q and Λ are, respectively, the eigenvector and eigenvalue
matrices resulting from the eigen-decomposition of the covariance
matrix Σ ¼QΛQ T . For simplicity, in the rest of the paper we will
refer to the original data matrix X as the sphered version of it.

In clustering applications, entropy is commonly used as the PP
index of the projected data [18].

However, the entropy calculation is computationally intensive,
requiring high-order integrals and a density estimator. A simpler
and robust alternative to entropy is the Holes PP index [27], which
returns comparable (and often better) results than entropy [20].
The Holes index is defined for a one-dimensional projection as

IHoles ¼ 1−
1
n

∑
n

i ¼ 1
e−ð1=2Þy

2
i ð3Þ

where yi is the projection of the ith data instance xi onto the
direction of the basis vector a, yi ¼ xi � a. We adopt Holes as the PP
index to be optimized in all experiments presented in this paper.

Sequential projection pursuit (SPP) [19] tackles the m-dimen-
sional constrained optimization problem in Eq. (1) by converting it
into a sequence of m one-dimensional optimization problems. The
first basis (PP factor) a1 in A is obtained by searching (with a GA) a
p-dimensional vector of unit length that maximizes the PP index.
Once the first PP factor a1 is found, the data set is projected onto it,
obtaining the score vector y1 ¼X � a1. The residual data is then
computed as X¼X−y1 � aT1. The process is then repeated on this
residual data to obtain a2, y2 a new residual data, subject to the
constraint that a2 is orthogonal to a1. In this way, the predefined m
PP factors are obtained in SPP.

2.2. Genetic algorithms

Genetic algorithms (GAs) [28] belong to a class of algorithms
inspired in Darwinian evolutionary theory. A typical GA begins
with a random population of solutions (individuals), which are
evaluated by a fitness function (that encodes the problem objec-
tive function). The algorithm is then subject to an evolutionary
loop, where each iteration (generation) produces a new popula-
tion as follows: a subset of individuals is stochastically chosen
from the current population (based on their fitness) and recom-
bined by a crossover operator (and possibly slightly altered by a
mutation operator) to produce an offspring population; the new
population is created by selecting individuals from the original and
the offspring populations by means of a replacement operation.

Here we use a steady-state continuous GA to evaluate the cross-
over operators described in the next section. This GA is thus named
PPGA, or projection pursuit genetic algorithm. The individuals in
PPGA are encoded as real-value unit-length vectors. This representa-
tion is used instead of the binary representation of SPP to avoid
loss of precision. Thus, an individual i is a candidate basis vector
ai ¼ ½ai1; ai2;…; aip�T to project the data X � ai. The fitness function is
the Holes PP index (Eq. (3)). The selection operator is implemented as
a tournament selection: we randomly choose ts individuals (the
tournament size) from the current population (of size w) and return
the best individual. With this selection method, w=2 pairs of different
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