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a b s t r a c t

Discrete data representations are necessary, or at least convenient, in many machine learning problems.
While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature
discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at
hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter
family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance
criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both
methods can be coupled with any static (unsupervised or supervised) discretization procedure and can
be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient
representations suitable for binary and multi-class problems with different types of data, being
competitive with existing methods. Moreover, using well-known FS methods with the features
discretized by our techniques leads to better accuracy than with the features discretized by other
methods or with the original features.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Datasets with large numbers of features and (relatively) smaller
numbers of instances are challenging for machine learning meth-
ods. In fact, it is often the case that many features are irrelevant or
redundant [1,2] for the learning task at hand (e.g., learning a
classifier). Moreover, some features may have minor fluctuations
which can be irrelevant, or even harmful, for the learning task.
These effects may be specially critical with small training sets
(with few instances), where these irrelevancies/redundancies are
harder to detect. In these scenarios, the performance of machine
learning and data mining tasks, in terms of both time and
accuracy, can be improved by preprocessing data with a discreti-
zation step. Moreover, some learning algorithms require a discrete
representation of the data.

To deal with the problems mentioned in the previous para-
graph, several feature selection (FS) [3] and feature discretization
(FD) [4] methods have been proposed. FS aims at reducing the
number of features, often allowing the learning algorithms to
obtain classifiers with better performance. FD techniques lead to
feature representations containing enough information for the
learning task at hand, while ignoring minor fluctuations. A
byproduct of FS and FD is a reduction of the memory required to
represent the data.

FD and FS are topics with a vast literature; see [4–8] for
extensive reviews of FD methods and [3,9–12] for a comprehen-
sive coverage and pointers to the literature on FS.

1.1. Our contribution

This paper proposes two incremental FD methods. One is a filter
approach, since the quality of the discretization is assessed by an
unsupervised or supervised relevance function. The other is a
wrapper, since it requires using a classifier learning algorithm.
Both methods yield a variable number of bits per feature and
assess the performance of each feature as the discretization is
carried out and can be coupled with any static (unsupervised or
supervised) discretization procedure. In the supervised wrapper
method, if the original representation is better than the discretized
one, in terms of classification error, the original one is kept; this
leads to a hybrid data representation containing both original and
discretized features, with a variable number of bits.

1.2. Organization of the text

Section 2 reviews unsupervised and supervised FD and FS
techniques. Section 3 presents the proposed FD methods, dis-
cusses the motivation behind these methods, and their extensions
to include FS before or after the discretization stage. Section 4
reports a comprehensive experimental evaluation of our methods
in comparison with other techniques. Finally, Section 5 presents
some concluding remarks and future work directions.
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2. Background on feature discretization and selection

This section reviews some FD and FS techniques that have
proven effective for many learning problems. This description is
far from exhaustive, as FD and FS are two topics with a long
research history. The reader is referred to [4–8], for reviews of FD
methods and to [3,9–12] concerning FS.

2.1. Feature discretization

The main goals of FD techniques are to reduce the amount of
required memory to represent the data and to obtain concise
representations, ignoring minor fluctuations. As a consequence,
FD usually leads to both an improvement in classification accuracy
and reduction of training time, as compared to the use of the
original features [4,5,7,13].

FD techniques can be categorized along the following five axes:
supervised or unsupervised; static or dynamic; global or local; top-
down or bottom-up; direct or incremental. Supervised methods use
class labels, whereas unsupervised ones do not. Static methods per-
form a single discretization that passes over the data, treating each
feature independently of the others, while dynamic methods discre-
tize all features jointly, thus taking into account interdependencies.
Global techniques discretize the entire feature space, whereas local
ones are based on a decision mechanism, such as a tree. Regarding
how the sequence of binary codes that represent the discrete feature
values are constructed, the top-down versus bottom-up categorization
refers to the splitting and merging actions, respectively. Finally,
in direct FD methods, one decides a priori on the number of bits per
feature, whereas incremental methods start with a coarse discretiza-
tion pass for all features and subsequently allocate more bits to each
feature, guided by some criterion.

In the FD literature, the quality of a discretization has been
assessed by several indicators; the two most common are

� Complexity—given by the number of discretization intervals or,
equivalently, the number of bits needed to represent them.
The training time of a learning algorithm working on discrete
data is usually proportional to the number of discretization
intervals.

� Classification accuracy—an adequate FD technique is expected
to lead to better classification accuracy, as compared to the use
of the original features.

2.1.1. Unsupervised methods
This subsection reviews static unsupervised scalar FD techni-

ques. In this context [4], the most common techniques are:

� Equal-interval binning (EIB), which performs uniform quantiza-
tion with a given number of bits per feature;

� Equal-frequency binning (EFB) [14], which obtains a non-
uniform quantizer where, for each feature, the number of
occurrences in each interval is the same;

� Proportional k-interval discretization (PkID) [15], which adjusts
the number and size of the discretization intervals to the
number of training instances, thus seeking a trade-off between
bias and variance of the class probability estimate of a naïve
Bayes (NB) classifier [16,17].

EIB is simple and easy to implement, but very sensitive to outliers,
thus it may lead to inadequate discrete representations. In EFB, the
quantization intervals are smaller in regions where there are more
occurrences of the feature values. EFB is thus less sensitive to outliers
than EIB. In both the direct top-down EIB and EFB methods, one can

specify a priori the number of discretization intervals. In contrast, the
PkID method computes the number and size of discretized intervals
proportionally to the number of training instances, seeking a trade-
off between the granularity of the intervals and the expected
accuracy of probability estimation. Given a numeric feature for which
the number of observed instances is v, it is discretized into

ffiffiffi
v

p

intervals, with
ffiffiffi
v

p
instances in each interval.

Although it is expected that supervised FD leads, in principle, to
better classifiers than unsupervised FD, it has been found that
unsupervised FD performs well in conjunction with several classi-
fiers; in particular, EFB in conjunction with NB classification
produces very good results [4]. It has also been found that
combining EIB or EFB with support vector machine (SVM, [18,19])
classifiers lead to good results on microarray data [20]. Experi-
mental results show that, in comparison to EIB and EFB, PkID
boosts NB classifiers to a competitive classification performance
for lower dimensional datasets, and better classification perfor-
mance for higher dimensional ones [15].

2.1.2. Supervised methods
Information entropy minimization (IEM) [21], based on the

minimum description length (MDL) principle [22], is one of the
oldest and most used methods for supervised FD. The key idea of
using MDL is that the most informative features to discretize are
those that are the most compressible. The IEM method is based on
the use of the entropy minimization heuristic for discretization of
a continuous value into multiple intervals as well as on the idea
of constructing small decision trees. IEM follows a top-down
approach in the sense that it starts with one interval and splits
intervals in the process of discretization.

The IEM variant (IEMV) proposed in [23] is also based on the
MDL principle, using an entropy minimization heuristic to choose
the discretization intervals. In fact, the authors propose a function
based on the MDL principle, such that its value decreases as the
number of different values for a feature increases. Experimental
results show that both IEM and IEMV lead to better decision trees
than the previous methods.

The ChiSquare method [24] is a simple and general algorithm
that uses the χ2 statistic to discretize numeric features. The
empirical results demonstrate that ChiSquare is effective in FS
and FD of numeric and ordinal features respectively.

The so-called Khiops discretization method [25] uses the χ2

statistic to merge consecutive intervals in order to improve the
global dependence measure. The method optimizes the χ2 criter-
ion globally on the whole discretization domain and does not
require any stopping criterion. A theoretical study followed by
experiments demonstrates the robustness and the good perfor-
mance of the method. MODL is another FD method proposed by
the same author [26], which builds an optimal Bayesian criterion,
introducing the concept of space of discretization models and a
prior distribution defined on this space.

An efficient FD algorithm for constructing Bayesian belief net-
works (BBN) was proposed in [27]. The partitioning minimizes
the information loss, relative to the number of intervals used
to represent each variable. Partitioning can be done only prior to
BBN construction or extended for repartitioning during that
construction.

The supervised, static, global, top-down, and incremental
class-attribute interdependence maximization (CAIM) [28] algorithm
aims at maximizing the class-attribute interdependence and to gen-
erate a (possibly) minimal number of discrete intervals. The experi-
mental results in [28] show that discrete features (attributes)
generated by CAIM usually have the lowest number of intervals and
the highest class-attribute interdependency, when compared with six
other state-of-the-art methods.
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