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a b s t r a c t

For data classification, the standard implementation of projection algorithms do not scale well with large
dataset size. It makes the computation of large samples infeasible. In this paper, we utilize a block
optimization strategy to propose a new locally discriminant projection algorithm termed min–max
projection analysis (MMPA). The algorithm takes into account both intra-class and interclass geometries
and also possesses the orthogonality property. Furthermore, an incremental MMPA is proposed to learn
the local discriminant subspace with newly inserted data by employing the idea of singular value
decomposition updating algorithm. Moreover, we extend MMPA to the semi-supervised case and
nonlinear case, namely, semi-supervised MMPA and kernel MMPA. The experimental results on image
database, hand written digit database, and face database demonstrate the effectiveness of those
proposed algorithms.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The problem of feature extraction is one of the core issues for
data mining and classification. Using a more efficient feature
extraction method can improve the classification results in the
reduced subspace. The problem of dimensionality reduction can be
described as follows. Consider a data set X, which consists of n
samples xi (1≤i≤n) in a high-dimensionality space Rm. The objec-
tive of dimensionality reduction is to compute a faithful low-
dimensionality representation of X, i.e. Y¼[y1,…,yn]∈ Rd�n, where
d⪡m.

Over the past decades, numerous dimension reduction meth-
ods have been proposed to find the low-dimensional feature
representation. The two most popular techniques for this purpose
are principal component analysis (PCA) [1] and linear discriminant
analysis (LDA) [2]. PCA is an unsupervised algorithm based on the
computation of low-dimensional representation of high dimen-
sional data, which maximizes the total scatter. Comparatively LDA
is a supervised feature extraction technique for pattern recogni-
tion, and it tends to find a set of projective directions which
maximize the between-class scatter and simultaneously minimize
the within-class scatter. An intrinsic limitation of LDA is that it
usually suffers from the small sample size (SSS) problem, where
the sample size is much smaller than the size of dimensionality of
samples. Additionally, both PCA and LDA can only see the global
Euclidean structure but cannot discover the embedding structure
hidden in the high-dimensional data.

In order to exploit the local discriminative manifold structure, a
lot of subspace learning techniques have been proposed, such as
locality preserving projections (LPP) [3], Maximal Similarity
Embedding [4], Local Spline Discriminant Projection [5], and
Neighborhood Preserving Embedding [6]. Recently, some research-
ers pointed out that enforcing an orthogonality relationship
between projection directions can achieve competitive effective-
ness, and therefore the orthogonal neighborhood preserving
projection (ONPP) was introduced [5,7]. However, for classification
problems, ONPP and LPP (even in a supervised setting) only focus
on the intra-class geometrical information while the interaction of
samples from different classes is ignored.

More recently, numerous algorithms have been proposed
which take the intra-class preserving into consideration as well
as the interclass discriminant [8–11]. Among them, the locality
sensitive discriminant analysis (LSDA) [8] and its variation max-
imum margin projection (MMP) [9] are two typical examples,
which gain more competitive results in image recognition applica-
tions. Yan et al. [12] explained most of these manifold learning
techniques as a general framework that can be defined in a graph-
embedding way. Generally, a discriminative feature extraction
algorithm is summarized as a graph-based constraint embedding
by defining the intrinsic and penalty graphs. In other words, it
finds a set of projection directions in the linear embedded sub-
space, i.e., J(U)¼argmin{(UTXLXTU)/(UTXBXTU)} or J(U)¼argmin
{UTXLXTU}, subject to UTXBXTU¼c, where c is a constant, X is the
data matrix, and L is the Laplacian matrix of intrinsic graph, which
is defined as follows: L¼D�W, Dii¼∑jWij. Here, W is the affinity
matrix of the intrinsic graph. In addition, B can be the Laplacian
matrix of penalty graph, B¼Dp�Wp, where Wp indicates the
adjacency matrix of penalty graph. Wp describes the similarity of
interclass data which should be avoided for classification. Dp is the
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diagonal matrix defined in the graph-embedding framework. The
general solution of the optimal U is to find the eigenvector
corresponding to the smallest eigenvalue using the generalized
eigenvalue decomposition (ED) XLXTU¼λXBXTU, which has a
heavy computation burden because of the high data dimension-
ality, especially in image and video applications.

Incremental learning has already attracted much attention as a
result of the increasing demand for developing machine vision/
intelligent systems. Numerous incremental learning algorithms
have been proposed, especially in the data-mining domain and the
image-retrieval field [13–15]. Most of these recent works are
designed for incremental principal component analysis [16,17]
and incremental linear discriminant analysis [18,19]. Both of them
are global statistic feature extraction algorithms. To our best
knowledge, there are few works focusing on the incremental local
discriminant embedding except for the ILDSE proposed by Miao
et al. [20], which demands that B must be Laplacian matrix.

In this paper, we propose a new algorithm termed min–max
projection analysis (MMPA) based on the perspective of block
optimization [21]. MMPA offers three main benefits (1) the
algorithm takes into account both intra-class and interclass
geometries so that it can achieve better performance in classifica-
tion; (2) the algorithm produces the orthogonal projection matrix;
and (3) the combination matrix of this algorithm can be iteratively
computed for the newly inserted samples.

Furthermore, an incremental MMPA is introduced to learn the
discriminative sub-manifold structure incrementally, namely, incre-
mental MMPA (IMMPA). This paper also extends MMPA to the
semisupervised case and nonlinear case, termed semisupervised
MMPA (SMMPA) and kernel MMPA (KMMPA) respectively. SMMPA
is produced by incorporating the additional unlabeled samples, and
KMMPA performs MMPA in reproducing kernel hilbert space (RKHS).
They are powerful. For generalization, the proposed algorithm is also
based on graph-embedding framework [12] that incorporates the
graph adjacency to represent the discriminative weights of data.

The rest of the paper is organized as follows. Section 2
introduces MMPA algorithm as well as the incremental imple-
mentation. Subsequently, the semisupervised MMPA algorithm is
proposed in Section 3. In Section 4, the algorithm is extended to
the nonlinear case, termed KMMPA. The experimental perfor-
mance of the proposed algorithms is presented in Section 5.
Finally, we conclude this paper in Section 6.

2. Min-max projection analysis (MMPA)

For a given training set X¼[x1,x2,…,xn]∈ Rm�n, where m, n
denote the dimension and the number of the original samples
respectively. The proposed MMPA algorithm aims at learning a
linear transformation matrix U, which can be used as Y¼UTX to
projection the original samples to subspace data Y¼[y1,…,yn]
∈Rd�n, where d⪡m.

After the transformation, the considered pairwise samples
within the same class are as close as possible, while those between
classes are as far as possible. The whole algorithm operates in two
stages, i.e., block optimization and combination strategy. Block
optimization involves building a block using each sample and
some of its related samples in the training set. Combination
strategy involves combining all the block optimizations to form
the final global coordinate using alignment trick [22].

2.1. Block optimization

Suppose that the class label of each sample xi is denoted by
c(xi). For any given sample xi∈X, we find its intraclass farthest
neighbors outside a certain radius εw based on their distance to xi.

On the contrary, the interclass nearby points of xi are searched
within the region bounded by the distance εb. Assume that the sets
of intra-class and interclass neighbors of xi are indicated by Nw(xi)
and Nb(xi), respectively. We have

NwðxiÞ ¼ fxwij ; jjxwij �xijj24εw; cðxwij Þ ¼ cðxiÞg

NbðxiÞ ¼ fxbij; jjxbij�xijj2oεb; cðxbijÞ≠cðxiÞg

where xijw is one of the farthest neighbors with the same class
label as xi and xijb is one of the nearest neighbors with different
class label as xi. Note that εw and εb can be different from each
other. Then, the intra-class and interclass affinity weight can be
defined as follows:

ww
ij ¼

exp �jjxi�xjjj2
2s2

� �
; if xj∈NwðxiÞ

0; otherwise

8<
: ð1Þ

wb
ij ¼

exp �jjxi�xj jj2
2s2

� �
; if xj∈NbðxiÞ

0; otherwise

8<
: ð2Þ

By combining xi, Nw(xi) with Nb(xi), we can build the block for
the sample xi as

Xi ¼ fxig∪Nw∪Nb ¼ fxi; xwi1;⋯; xwikiw ; x
b
i1;⋯; xbikib g ð3Þ

where kiw, kib are the numbers of the farthest within class
neighbors and the nearest between class neighbors respectively.
The output of each block in the low-dimensional space is denoted by

Yi ¼ fyi; ywi1;⋯; ywikiw ; y
b
i1;⋯; ybikib g ð4Þ

In the subspace, we expect to make the farthest within class
neighbors be as close as possible. In the meantime, we expect that
the distances between the given sample and the neighbor samples
with different labels are as large as possible. Fig. 1 illustrates the
process of block optimization, where the solid circle has the radius
of εw and the outside dotted circle's radius is εb. The blue circle on
the left represents the ith block in an original high-dimensional
space, and the block contains samples with the same label, some
of which are the farthest intra-class neighbors (i.e., xi1w, xi2w, and
xi3w). The block also contains neighbor samples with different
labels (i.e., xi1b, xi2b, and xi3b).The expected results on the block in
the low-dimensional space are shown in Fig. 1 (right), where yi1w,
yi2w, and yi3w are as close as possible to yi, whereas yi1b, yi2b, and
yi3b are as far away as possible from yi.

MMPA assumes that the farthest neighbors with the same label
yi1w,…,yikiww, are as close as possible to the given sample yi. To
make this happen, we minimize the sum of the distances between
yi and yi1w,…,yikiww, and so we have

argmin
yi

∑
kiw

j ¼ 1
jjyi�ywij jj2ww

ij ð5Þ

ε

ε

Fig. 1. Block optimization of MMPA.
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