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a b s t r a c t

We propose an architecture for Takagi–Sugeno (TS) fuzzy system and develop an incremental smooth
support vector regression (ISSVR) algorithm to build the TS fuzzy system. ISSVR is based on the
ε-insensitive smooth support vector regression (ε-SSVR), a smoothing strategy for solving ε-SVR, and
incremental reduced support vector machine (RSVM). The ISSVR incrementally selects representative
samples from the given dataset as support vectors. We show that TS fuzzy modeling is equivalent to the
ISSVR problem under certain assumptions. A TS fuzzy system can be generated from the given training
data based on the ISSVR learning with each fuzzy rule given by a support vector. Compared with other
fuzzy modeling methods, more forms of membership functions can be used in our model, and the
number of fuzzy rules of our model is much smaller. The performance of our model is illustrated by
extensive experiments and comparisons.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machine (SVM) [1] is one of the most promising
learning algorithms for pattern classification. It is based on the
structural risk minimization (SRM) principle. Vapnik introduced an
ε-insensitive loss function and applied SVM to regression problems.
The ε-insensitive loss function sets an ε-insensitive tube around the
data, within which errors are disregarded. This problem is referred
to as ε-insensitive support vector regression (ε-SVR) [2]. ε-SVR is
formulated as a constrained minimization problem, and is extended
to the nonlinear case by using the kernel technique. A smoothing
strategy for solving ε-SVR, named ε-insensitive smooth support
vector regression (ε-SSVR), was proposed in [3]. The ε-SSVR approx-
imates the ε-insensitive loss by a smooth function and converts
ε-SVR to an unconstrained minimization problem. The objective
function of ε-SSVR is strongly convex and infinitely differentiable for
any arbitrary kernel. It is always solvable using a fast Newton–
Armijo method.

For the last decade, there has been an increasing interest in
incorporating support vector learning into fuzzy modeling. Chen
[4,5] proposed a positive definite fuzzy system (PDFS). The member-
ship functions for the same input variable were generated from

location transformation of a reference function [6]. The fuzzy rules
were determined by support vectors (SVs) of an SVM, where the
kernel was constructed from the reference functions. The kernel was
proven to be an admissible Mercer kernel if the reference functions
were positive definite functions [7]. Chiang [8] proposed an SVM-
based modeling framework for fuzzy basis function inference system
[9]. Fuzzy rules were extracted from the training data based on the
SVs. In these two models, the number of fuzzy rules equaled the
number of SVs. As the number of SVs in an SVM was usually large,
the number of fuzzy rules was equally large. Lin proposed an SVR-
based fuzzy neural network (SVRFNN) [10]. The number of fuzzy
rules in the SVRFNN was reduced by removing irrelevant fuzzy rules,
but this rule reduction approach degraded the generalization
performance. In all these SVM-based models, the form of the
membership functions was restricted by the Mercer condition [11],
i.e., the positive definiteness of the membership functions was
required. All of the above models use fuzzy rules with singletons
in the consequent. A fuzzy system with Takagi–Sugeno (TS)-type
consequent, i.e., a linear combination of the input variables, has
better performance than that with singleton consequent. Research-
ers have also proposed methods for TS fuzzy modeling [12–21]. Leski
[20] introduced Vapnik's ε-insensitive loss function to Takagi–
Sugeno–Kang (TSK) fuzzy modeling. The parameters of the member-
ship functions were determined by fuzzy c-means clustering (FCM).
The number of fuzzy rules equaled the number of clusters. The
consequent parameters were obtained by solving a minimization
problem. Juang proposed a self-organizing TS-type fuzzy network
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with support vector learning (SOTFN-SV) [22]. The antecedent of
SOTFN-SV was generated by fuzzy clustering of the data, and then
the consequent parameters were tuned by SVM. A TS fuzzy system-
based SVR (TSFS-SVR) model was also proposed by Juang [21]. The
parameters of TSFS-SVR were learned by a combination of fuzzy
clustering and linear SVR. Based on the TSFS-SVR, Juang proposed
two other TS fuzzy modeling methods [18,19]. Cai proposed a
Gaussian kernel-based high order fuzzy system (KHFIS) [13]. That
study extended Leski's model to high order fuzzy systems. In all
these TS fuzzy modeling methods, the antecedent fuzzy sets were
estimated
by fuzzy clustering and they were only conceived for Gaussian
membership function.

The learning of SVMs can be very costly in terms of time and
memory consumption, especially on large datasets as we have to
deal with a large kernel matrix. In some cases, the data cannot be
collected in advance, they come sequentially. To address these
problems, incremental SVMs were proposed [23–26]. Juang pro-
posed an incremental SVM-trained TS-type fuzzy classifier (ISVM-
FC) [27]. That study was the first design of a fuzzy classifier using
incremental SVM and can be applied to online classification
problems. A fuzzy modeling method via online SVM (FSVM) was
proposed in [28]. The structure identification was performed by
using an online SVM, then fuzzy rules were extracted and
membership functions were updated. An incremental reduced
support vector machine (IRSVM) was proposed in [29]. It com-
bined incremental learning and reduced support vector machine
(RSVM). The RSVM, proposed by Lee [30,31], selected a small
random portion of the data to generate a reduced kernel. This
reduced kernel technique has been applied to ε-SSVR [3]. Instead
of purely random selection, IRSVM selected representative sam-
ples incrementally from the dataset in forming the reduced kernel.
IRSVM achieved comparable accuracy with RSVM, while with a
smaller number of SVs.

In this paper, we first apply the concept of IRSVM to ε-SSVR and
propose incremental smooth support vector regression (ISSVR).
Then we establish a connection between ISSVR and TS fuzzy
systems. An ISSVR-based TS fuzzy modeling method is proposed.
TS-type fuzzy rules are automatically generated from the given
training data based on the ISSVR learning. Since ε-SSVR puts no
restrictions on the kernel, our model relaxes the positive definite-
ness requirement on membership functions. Any arbitrary form of
membership functions can be used. Numerical results show that
our model has good generalization ability with small number of
fuzzy rules.

A brief description of our notation is given as follows. All
vectors will be column vectors unless transposed to a row vector
by a prime superscript 0. x′y will denote the inner product of two
vectors x and y in ℝn. The p-norm of x will be denoted by JxJp. For
a vector x in ℝn, the plus function xþ is defined as ðxþ Þi ¼
maxf0; xig, and the ε-insensitive loss is ðjxjεÞi ¼maxf0; jxj�εg;
i¼ 1;…;n. For a matrix AAℝm�n, Ai will denote the ith row of A.
A column vector of ones of arbitrary dimension will be denoted by 1.
A training dataset is fðx1; y1Þ;…; ðxm; ymÞg, where xiAℝn is the ith
sample and yiAℝ is the observation of real value associated with xi.
For notational convenience, the training dataset will be rearranged as
an m� n matrix A and yAℝm. For AAℝm�n and BAℝn�l, the kernel
KðA;BÞ maps ℝm�n �ℝn�l into ℝm�l. In particular, if x and y are
column vectors in ℝn, then Kðx′; yÞ is a real number, KðA; xÞ ¼ Kðx′;A′Þ′
is a column vector in ℝm and KðA;A′Þ is an m�m matrix.

The rest of this paper is organized as follows. Section 2
introduces the incremental smooth support vector regression. In
Section 3, we introduce TS fuzzy modeling based on the ε-insen-
sitive learning. Section 4 describes our ISSVR-based TS fuzzy
modeling method in detail. Section 5 presents experimental
results and comparisons. Section 6 is the conclusion.

2. Incremental smooth support vector regression

2.1. Basic ε-SSVR concepts

We consider a given dataset fðx1; y1Þ;…; ðxm; ymÞgwhich consists
of m samples in ℝn represented by AAℝm�n and m observations of
real value associated with each sample. The goal of a regression
problem is to find a function f ðxÞ that tolerates a small error in
fitting all the data. By utilizing the ε-insensitive loss function [2],
the tiny errors that fall within some tolerance ε are disregarded.
Based on the idea of SVMs, the function f ðxÞ is made as flat as
possible at the same time. We begin with the case of linear
function f ðxÞ, taking the form f ðxÞ ¼ x′wþb, where w is the normal
vector. The problem can be formulated as the following uncon-
strained minimization problem:

min
w;b

1
2
JwJ22þC1′jξjε ð1Þ

where ðjξjεÞi ¼maxf0; jAiwþb�yij�εg; i¼ 1;…;m, is the ε-insensi-
tive loss and C is a positive parameter controlling the tradeoff
between the flatness of f ðxÞ and the amount up to which devia-
tions larger than ε are tolerated. Conventionally, this problem is
reformulated as a convex quadratic minimization problem called
ε-insensitive support vector regression (ε-SVR). Mercer kernels
[11] are used to make the algorithm nonlinear.

The ε-SSVR [3] modifies the problem slightly and solves it as an
unconstrained minimization problem directly. In ε-SSVR, the square
of 2-norm of the ε-insensitive loss is minimized with weight C=2
instead of the 1-norm of the ε-insensitive loss as in (1). In addition,
b2=2 is added in the objective function, and this induces strong
convexity and has little or no effect on the problem. These
modifications lead to the following unconstrained minimization
problem:

min
w;b

1
2
ðJwJ22þb2ÞþC

2
∑
m

i ¼ 1
jAiwþb�yij2ε ð2Þ

For all xAℝ and ε40, we have jxj2ε ¼ ðx�εÞ2þ þð�x�εÞ2þ , where
xþ is a plus function. The following p-function can provide a very
accurate smooth approximation to xþ :

pðx; αÞ ¼ xþ1
α
log ð1þexpð�αxÞÞ ð3Þ

where α40 is the smoothing parameter. Therefore, xj j2ε can be
accurately approximated by the following p2ε -function:

p2ε ðx; αÞ ¼ ðpðx�ε; αÞÞ2þðpð�x�ε; αÞÞ2 ð4Þ
Replacing the square of the ε-insensitive loss in (2) using this

p2ε -function yields the following ε-SSVR formulation:

min
w;b

1
2
ðJwJ22þb2ÞþC

2
1′p2ε ðAwþ1b�y; αÞ ð5Þ

where p2ε ðAwþ1b�y; αÞi ¼ p2ε ðAiwþb�yi; αÞ; i¼ 1;…;m. The objec-
tive function in this problem is strongly convex and infinitely
differentiable. Therefore, this problem has a unique solution and
can be solved using a fast Newton–Armijo method. The solution of
(2) can be obtained by solving (5) with α approaching infinity [3].

For the nonlinear case, the duality theorem in convex mini-
mization problem [32,33] and the kernel technique [1] are applied.
The observation yAℝm is approximated by a nonlinear function of
the form y� KðA;A′Þuþ1b, where KðA;A′Þ is a nonlinear kernel
with KðA;A′Þij ¼ KðAi;A

′
jÞ. The regression parameter uAℝm and the

bias bAℝ are determined by solving the following unconstrained
minimization problem.

min
u;b

1
2
ðJuJ22þb2ÞþC

2
∑
m

i ¼ 1
jKðAi;A′Þuþb�yij2ε ð6Þ
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