Neurocomputing 123 (2014) 381-389

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

NEUROCOMPUTING

NEUROCOMPUTING
LETTERS

Multi-objective adaptive evolutionary strategy for tuning compilations

@ CrossMark

Antonio Martinez-Alvarez **, Jorge Calvo-Zaragoza®?, Sergio Cuenca-Asensi?,

Andrés Ortiz°, Antonio Jimeno-Morenilla?®

2 Computer Technology Department, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain

b Communications Engineering Department, University of Mdlaga, Mdlaga, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 26 March 2013
Received in revised form

3 July 2013

Accepted 7 July 2013
Communicated by A. Prieto
Available online 19 August 2013

Keywords:

Tuning compilations
Evolutionary search

Genetic algorithm

Adaptive strategy
Multi-objective optimization
NSGA-II

Tuning compilations is the process of adjusting the values of a compiler options to improve some
features of the final application. In this paper, a strategy based on the use of a genetic algorithm and a
multi-objective scheme is proposed to deal with this task. Unlike previous works, we try to take
advantage of the knowledge of this domain to provide a problem-specific genetic operation that
improves both the speed of convergence and the quality of the results. The evaluation of the strategy is
carried out by means of a case of study aimed to improve the performance of the well-known web server
Apache. Experimental results show that a 7.5% of overall improvement can be achieved. Furthermore, the
adaptive approach has shown an ability to markedly speed-up the convergence of the original strategy.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important and fundamental issues of any
branch of engineering is optimization. For example, the optimiza-
tion of the resources and the costs in the manufacture of a product,
the optimization of the development time of a solution or the
optimization of the most important features of a product. Industry
solutions that succeed are those that appear before, solve the
problem and also minimize the related costs.

When trying to optimize the performance of a software appli-
cation, many involved elements and conditions must be taken into
consideration. In this context, compilers suppose a decisive factor
in the optimization. Compilers currently offer a large number of
optimization options. However, this capability is never fully
exploited as it involves a comprehensive understanding of the
underlying computer architecture, the target application and the
operation of the compiler. The selection of the most convenient
compiler options to improve a specific target (e.g. execution time,
code size, cache L2 misses, etc.) represents a very complex task
due to several reasons: modern most-used compilers such as
GCC [1], Clang [2] or ICC [3] provide a large option set that can
change the features of the application, some option combinations
can change the normal execution (e.g. code vectorization
could relax the accuracy of floating point operations) and

* Corresponding author. Tel.: +34 965903400x3043; fax: +34 965909643.
E-mail addresses: amartinez@dtic.ua.es (A. Martinez-Alvarez),
jcalvo@dtic.ua.es (J. Calvo-Zaragoza), sergio@dtic.ua.es (S. Cuenca-Asensi),
aortiz@ic.uma.es (A. Ortiz), jimeno@dtic.ua.es (A. Jimeno-Morenilla).

0925-2312/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2013.07.036

dependencies amongst options cannot be known in advance as
they also depend on the target application. Thereby obtaining
the best combination by brute-force is unfeasible in terms of
computational cost.

Aforementioned reasons lead us to propose a strategy that
speeds up the exploration of compilation space and produces good
solutions in an affordable time. Several authors have proposed
different approaches to do this search. Pinkers et al. [4] considered
the compiler as a black box in which nothing about the inner
workings is known. They selected only a subset of compiler options
using orthogonal vectors. ACOVEA [5] used a genetic algorithm to
find the best options for speed-up programs compiled using GCC.
Bashkansky and Yaari [6] proposed a framework (ESTO) to obtain
suboptimal compilations using a genetic algorithm.

All previous proposals try to optimize a single criterion as a
result of the compilation (usually the execution time) and ignore
other features that may be equally important in relation to
performance. The performance improvement of an application
can be characterized by various technical criteria and design
constraints that must be satisfied simultaneously and optimized
as far as possible. Occasionally, these criteria may conflict and
result in a mutual worsening (e.g. performance and power con-
sumption in embedded systems).

In this paper, a genetic algorithm to explore the solution space
is also proposed and, in addition, we include two significant
contributions.

First, our approach uses a Multi-Objective Optimization (MOO)
strategy to avoid this problem. These strategies consist in search-
ing a set of optimal solutions for a set of criteria. Although the

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.07.036
http://dx.doi.org/10.1016/j.neucom.2013.07.036
http://dx.doi.org/10.1016/j.neucom.2013.07.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.07.036&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.07.036&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.07.036&domain=pdf
mailto:amartinez@dtic.ua.es
mailto:jcalvo@dtic.ua.es
mailto:sergio@dtic.ua.es
mailto:aortiz@ic.uma.es
mailto:jimeno@dtic.ua.es
http://dx.doi.org/10.1016/j.neucom.2013.07.036

382 A. Martinez-Alvarez et al. /| Neurocomputing 123 (2014) 381-389

combination of MOO schemes with genetic algorithms has been
widely used before [7-9], the proposed application for tuning
compilations is innovative.

Second, knowledge of the problem domain allows us to
improve the execution of the genetic algorithm by including
custom genetic operators (also known as Problem-Specific Genetic
Algorithms [10,11]). In the context of tuning compilations, there
are two main aspects that we have taken into account to improve
the strategy:

1. Compilations errors may occur due to incompatibilities
between options. These compilations must be avoided in
applications where this process is very expensive in terms of
time. Some of these inconsistencies cannot be known in
advance as they depend on the specific target application.

2. For each pair application/processor generally exists a set of
options that can dramatically improve the performance. Learn-
ing this knowledge could be used to rapidly guide the genetic
algorithm towards the most profitable solutions.

The inclusion of these features in the genetic algorithm improves
both the quality of the results and the speed of convergence.

1.1. Background

Compilation process is strongly related to the target architec-
ture. The available compilation options can alter the functioning of
the system, as well as the interaction with the operating system, e.
g. increasing or decreasing the number of context switches and
cache misses, phenomena that can directly affect performance.

Performance of current microprocessors, with their complex
pipelines and integrated data and instruction cache levels, is
highly dependent on the compiler and its ability to structure the
code for optimal performance. Obtaining the optimal program
structure and scheduling is a complex process which is specific to
each architecture, leading to large differences in performance
depending on the employed optimization techniques. This task is
carried out to the extreme in VLIW (Very Long Instruction Word)
and EPIC (Explicitly Parallel Instruction Computing) architectures
such as Itanium or Itanium 2. These microprocessors delegate the
instruction scheduling to the compiler in order to reduce the
complexity and free up space. In these cases, the compiler must
statically determine the structure and exploit the parallel archi-
tecture to optimize the performance [12].

Besides the above stated, it should be noted that optimization
options from modern compilers do not work in an atomic way, i.e.
its influence varies depending on other modifiers. Because of this
fact, the task of adjusting the compilation to take the maximum
advantage of the system, has an enormous complexity, even with a
full knowledge of the process. Although some compilers include
predefined optimization levels (e.g. -00...-03 option group for
GCC, Clang or ICC), in most applications they are far from optimal.

On the other hand, the use of some optimization techniques
can produce adverse effects. For example, function in-lining can
make a program run faster by avoiding the time cost of routine
calls. However, in-lining overuse can result in a very large program
which directly affect the instruction cache misses and therefore
the final performance [13]. Due to these circumstances we propose
a strategy which combines a multi-objective optimization scheme
for optimizing conflicting goals, with a genetic algorithm for
speeding up the exploration of the search space.

In the next section the proposed strategy for tuning compila-
tions is described. In Section 3, the specific-problem genetic
operators are presented and discussed. Section 4 presents a case
of study to evaluate the strategy whose results are drawn in

Section 5. Last section concludes this work and discusses direc-
tions for future research.

2. Multi-objective optimization strategy for tuning
compilations

The problem of getting the best option selection in the
compilation process has been presented. Considering the number
of possibilities to be taken into account, the problem cannot be
solved by exploring the entire solution space. Therefore, the
proposed strategy uses a genetic algorithm as search engine.
Genetic Algorithms (GA) are a stochastic search technique inspired
by the theory of evolution and belongs to the group of techniques
known as Evolutionary Algorithms (EAs). These techniques are
based on imitating evolutionary processes as natural selection,
crossover and mutation.

A GA operates on a set of individuals and each one represents a
possible solution to the problem. Each individual is encoded by its
chromosome, comprising a number of genes which represent
parts of the solution. These individuals are initialized randomly
and better solutions are obtained through crossover and mutation
operators. Subsequently, individuals are evaluated and selected so
that only those who codify the best solutions can survive. At the
end of the process, a set of solutions can be extracted from the
surviving population.

For the problem presented here, the best solutions are those
that most optimize the target application. Optimization during
compilation consists in setting the compiler options to improve
certain features of the program without altering the results, i.e.,
maintaining the correctness. Typically, the most common goal is to
reduce both execution time and code size. However, many of the
compiler options reduce the execution time by increasing the size
of code, and vice versa. Therefore, finding the best trade-off is far
from being trivial. Moreover, these are not the only conflicting
criteria that can be taken into account, especially if the scope of
the problem is not for general purpose machines. For example, in
embedded systems there are other factors like power consump-
tion, security and fault tolerance. In these situations, when asses-
sing the quality of a solution is unclear, several approaches can be
adopted. In this work, a multi-objective optimization scheme has
been implemented.

2.1. Genetic algorithm

In our approach (Fig. 1), the chromosome of each individual (G)
represents a possible compilation. As can be noted, every gene (G;)
can only take two possible values (0 or 1). Moreover, we consider
two different types of optimization options. The first one is
defined by a compiler flag such as -finline-functions-
called-once Which is encoded using a single gene that can be
enabled, taking the value 1, or disabled, taking the value 0. The
second type is defined by options taking values within a set. This is
the case of the GCC generic optimization level -ox where
X e{0,1,2,3,s}. This information is encoded using N genes, where
N is the number of possible values (5 in the given example). Only
the gene representing the chosen value from set will take the value
1, while the rest remain O.

To provide flexibility, our system is not restricted to any given
compiler. Thus, taking a selected compiler (GCC in our case study)
the set of compiler options and its possible values have to be
provided to the system by means of a configuration file. The
population is initialized randomly, but specification of initial
individuals is allowed to take advantage of prior knowledge.

The process consists in five stages. In the initialization step, a
random new population is created by specifying the compiler

Download English Version:

https://daneshyari.com/en/article/407041

Download Persian Version:

https://daneshyari.com/article/407041

Daneshyari.com

https://daneshyari.com/en/article/407041
https://daneshyari.com/article/407041
https://daneshyari.com

