
Active learning on manifolds

Cheng Li a, Haifeng Liu b, Deng Cai a,n

a The State Key Lab. of CAD&CG, Zhejiang University, No. 388 Yu Hang Tang Road, Hangzhou 310058, China
b College of Computer Science, Zhejiang University, No. 388 Yu Hang Tang Road, Hangzhou 310058, China

a r t i c l e i n f o

Article history:
Received 26 February 2013
Received in revised form
15 May 2013
Accepted 3 August 2013
Communicated by Qingshan Liu
Available online 17 August 2013

Keywords:
Manifold
Active learning

a b s t r a c t

Due to the rapid growth of the size of the digital information available, it is often impossible to label all
the samples. Thus, it is crucial to select the most informative samples to label so that the learning
performance can be most improved with limited labels. Many active learning algorithms have been
proposed for this purpose. Most of these approaches effectively discover the Euclidean structure of the
data space, whereas the geometrical (manifold) structure is not well respected. In this paper, we propose
a novel active learning algorithm which explicitly considers the case that the data are sampled from a
low dimensional sub-manifold embedded in the high dimensional ambient space. The geodesic distance
of two data points on the manifold is estimated by the shortest-path distance between the two
corresponding vertices in the nearest neighbor graph. By selecting the most representative points with
respect to the manifold structure, our approach can effectively decrease the number of training examples
the learner needs in order to achieve good performance. Experimental results on visual objects
recognition and text categorization have demonstrated the effectiveness of our proposed approach.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many image processing and computer vision tasks, there are
no short of unlabeled data but labels are expensive. In order to
reduce the efforts in collecting labels, many researchers studied to
use active learning [6] for various tasks. The key problem in active
learning is determining which unlabeled examples would be the
most informative, i.e., improve the classifier the most if they were
labeled and used as training examples.

There have been many heuristics proposed for active learning,
including choosing the most uncertain data given previously
trained models (SVMActive [31]); choosing the data which are
expected to change the trained model [5]; exploiting the cluster
structure of the data [8]. In statistics, a closely related concept is
Optimal Experimental Design (OED) [1] which aims at finding a set
of points such that the variance of the estimation is minimized.
Classical experimental design approaches include A-optimal
design, D-optimal design, E-optimal design and I-optimal design.

Recently, Yu et al. have proposed Transductive Experimental
Design (TED) [33] which has yielded impressive results. TED is
fundamentally based on the experimental design but evaluates the
expected variance on both labeled and unlabeled examples. It has
been shown that finding those points which minimize the average

predictive variance of the estimated function is equivalent to find
those points such that other points can be best approximated by
linear combination of the selected points [33]. In other words, TED
tries to find the most representative data points (all the other
points can be linearly reconstructed from the selected points).

Standard learning systems operate on input data after they
have been transformed into feature vectors living in a high
dimensional space. In such a space, standard learning tasks like
classification, clustering, data selection (active learning) can be
performed. The resulting hypothesis will then be applied to test
points in the same vector space, in order to make predictions.
Many previous studies [2,22,29] have shown that naturally occur-
ring data cannot possibly fill up the high dimensional space
uniformly, rather they must concentrate around lower dimen-
sional structure. However, all the above-mentioned active learning
heuristics fail to take into account the intrinsic manifold structure.

In this paper, we propose a novel active learning algorithm
which explicitly considers the case that the data are sampled from
a low dimensional sub-manifold embedded in the high dimen-
sional ambient space. We follow the idea behind TED [33] which
finds the most representative data points while the representa-
tiveness in our approach is defined explicitly on the data manifold.
Inspired by the pioneering manifold learning work [29], we
construct a nearest neighbor graph from the data and use the
shortest path distance of the two corresponding vertices to
approximate the geodesic distance of two data points along the
manifold. With the estimated pairwise geodesic distances, we
select the data points which can best “cover” the entire data set. It
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is worthwhile to point out that the input of our algorithm can be
only a graph. In reality, many real world applications have graph
represented data and our algorithm suggests an approach for
active learning on graphs.

The rest of the paper is organized as follows: in Section 2, we
provide a brief review of the related work. Our manifold based
active learning algorithm is introduced in Section 3. The experi-
mental results are presented in Section 4. Finally, we provide the
concluding remarks in Section 5.

2. Related work

There has been extensive research on the subject of active
learning [4,6,11,12,14,16–19,32]. The generic problem of active
learning is the following. Given a set of points X¼ fx1; x2;…; xng
in Rm, find a subset Z¼ fz1; z2;…; zkg �X which contains the most
informative points.

Existing approaches for active learning can roughly be divided
into two groups. The first group of algorithms selects the most
uncertain data given previously trained models [9,30]. One repre-
sentative algorithm in this group is SVMActive [30,31]. This method
selects the points that can reduce the size of the version space as
much as possible. Since it is difficult to measure the version space,
the authors provide three approximations. One of them which
selects the points closest to the current decision boundary is called
SimpleMargin. This method was also proposed by [24] and has
been very popular. The second group of algorithms exploits the
cluster structure of the data and selects the most representative
points. For example, Dasgupta and Hsu [8] use hierarchical
clustering to select the representative points. Some other methods
include query-by-committee [28], density-weighted methods
[21,27], and explicit error-reduction techniques [23,34]. Refer
[26] for a comprehensive treatment of active learning approaches.

In statistics, the problem of selecting samples to label is
typically referred to as experimental design. The sample x is
referred to as experiment, and its label y is referred to as
measurement. The study of optimal experimental design (OED)
[1] is concerned with the design of experiments that are expected
to minimize variances of a parameterized model. Classical experi-
mental design approaches include A-optimal design, D-optimal
design, E-optimal design. One limitation of these approaches is
that there is no guarantee that these approaches will select either
most uncertain points or most representative points.

In [12], He et al. have proposed a new approach called Graph
Regularized Experimental Design (GRED). GRED is fundamentally
based on the D-optimal design. Instead of using least squares
classifier (which is the foundation of A-, D-, E-optimal design),
GRED uses Laplacian Regularized Least Squares (LapRLS) classifier
[3]. Since LapRLS considers the local geometric structure of the
data, GRED is also expected to capture the local geometric
information. Since GRED is based on the D-optimal design, it has
the same limitation as D-optimal design.

Recently, Yu et al. have proposed Transductive Experimental
Design (TED) [33] which is closely related to the I-optimal design
[1]. TED tries to minimize the average predictive variance of the
estimated function, which has been showed that is equivalent to
finding a set of points such that other points can be best
approximated by linear combination of the selected points [33].
The equivalent objective function is as follows:

min
Z;A

∑
n

i ¼ 1
ðJxi�Zai J2þμJai J2Þ

s:t: Z¼ ½z1;…; zk� � ¼ ½x1;…; xn�
A¼ ½a1;…; an�ARk�n

where X¼ ½x1;…; xn� are n data points, Z¼ ½z1;…; zk� are k points
selected from X and ai is the coefficient for reconstructing xi using Z.

This observation connects TED and those methods which
exploit the cluster structure of the data and makes TED signifi-
cantly different from the traditional A-, D-, E-optimal design.

3. Active learning on manifold

Recent studies [2,22,29] have shown that naturally occurring
data cannot possibly fill up the high dimensional space uniformly,
rather they must concentrate around lower dimensional structure.
In this section, we introduce our novel active learning approach
which explicitly considers the data manifold in question. Since our
approach is fundamentally based on the differential geometry, we
begin with a brief description of the basic geometrical concepts.
See [20] for a detailed treatment.

3.1. Riemannian manifolds

Manifolds are generalizations of curves and surfaces to arbi-
trarily many dimensions. The formal definition of manifold is as
follows.

Definition 3.1. A d-dimensional manifold (denoted by Md) is a
topological space that is locally Euclidean. That is, around every
point, there is a neighborhood that is topologically the same as the
open unit ball in Rd.

In order to compute distances on the manifold, one needs to
equip a metric to the topological manifold. A manifold possessing
a metric is called Riemannian Manifold, and the metric is com-
monly referred to as Riemannian Metric.

Definition 3.2. Suppose for every point x in a manifold M, an
inner product 〈�; �〉x is defined on a tangent space TxM of M at x.
Then the collection of all these inner products is called the
Riemannian metric.

Note that a Riemannian metric is not a distance metric on M.
However, for a connected manifold, it is the case that every
Riemannian metric induces a distance matric on M, i.e. Geodesic
Distance.

Definition 3.3. The geodesic distance dMða; bÞ is defined as the
length of the shortest curve connecting a and b.

In the plane, the geodesics are straight lines. On the sphere, the
geodesics are great circles (like the equator).

3.2. Formulation

Given a set of points X ¼ fx1; x2;…; xng in Rm sampled from the
underlying manifold M, the problem of active learning on mani-
fold can be defined as finding a most “representative” (with
respect to the manifold) subset Z ¼ fz1; z2;…; zkg �X .

If the underlying manifold is known, we can compute the
geodesic distance between each pair of the sample points. Given a
set of points A¼ fx1;…; xkg, we define the geodesic distance from
a point xi to the set A as the shortest geodesic distance from the
point xi to any point belongs to A. Then we define the most
“representative” subset Z as the subset which has minimized
average geodesic distance to all the remaining points in X .

In real life data sets, the underlying manifold M is often
unknown. One hopes then to estimate geometrical and topological
properties of the manifold from random samples (“scattered
data”) lying on this unknown manifold. Inspired by the pioneering
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