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a b s t r a c t

The uniformly pseudo-projection-anti-monotone (UPPAM) neural network model, which can be con-
sidered as the unified continuous-time neural networks (CNNs), includes almost all of the known CNNs
individuals. Recently, studies on the critical dynamic behaviors of CNNs have drawn special attentions
due to its importance in both theory and applications. In this paper, we will present the analysis of the
UPPAM network under the general critical conditions. It is shown that the UPPAM network possesses the
global convergence and asymptotical stability under the general critical conditions if the network
satisfies one quasi-symmetric requirement on the connective matrices, which is easy to be verified and
applied. The general critical dynamics have rarely been studied before, and this work is an attempt to
gain a meaningful assurance of general critical convergence and stability of CNNs. Since UPPAM network
is the unified model for CNNs, the results obtained here can generalize and extend the existing critical
conclusions for CNNs individuals, let alone those non-critical cases. Moreover, the easily verified con-
ditions for general critical convergence and stability can further promote the applications of CNNs.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The two basic elements of a recurrent neural network (RNN)
are the synaptic connections among the neurons and the non-
linear activation functions deduced from the input–output prop-
erties of the involved neurons. For applications such as associative
memory, synaptic connections among the neurons are designed to
encode the memories we hope to recover. The activation functions
are assumed to capture the complex, nonlinear response of neu-
rons of the brain. For different purpose of simulations and appli-
cations, both of them are preassigned before use. So under-
standing their properties is very important, and especially
exploring the characteristics of the activation functions is quite
crucial to determine the performance of the RNNs. For the com-
monly used RNN individuals, the activation functions are mono-
tonically nondecreasing and saturated. To study and apply RNNs
only based on such two features are far from enough. To overcome

the non-thorough descriptions of activation functions, many spe-
cial cases of activation functions have been brought forward,
resulting in many different RNNs individuals. Furthermore, in
order to obtain more useful results of RNNs, e.g., the convergence
and stability of those individuals, additional strict requirements
are unavoidable to impose on the networks for the lack of in-depth
descriptions on the activation functions. Obviously, since those
individuals are studied separately, it is inevitable that there exist
large numbers of redundancy of analysis for those individual
models. In order to reduce the superabundance, establishing a
harmonization methodology is a challenging work.

In [16], Xu and Qiao put forward two novel concepts: uniformly
anti-monotone and the pseudo-projection properties of the acti-
vation functions, which discover more essential characteristics
other than the nondecreasing and bounded properties of the
commonly used activation functions. It is shown that the proposed
uniformly pseudo-projection anti-monotone (UPPAM) operator
can embody most of the activation operators (the precise defini-
tion of uniformly pseudo-projection-anti-monotone operator will
be given in Section 2), e.g., nearest-point projection, linear satur-
ating operator, signum operator, symmetric multi-valued step
operator, multi-threshold operator, and winner-take-all operator.
Thus, the UPPAM operator can be considered as a framework of
formalizing most of the activation operators of RNNs.
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In this paper, we use the concept of UPPAM operators to
establish a unified model for continuous-time RNNs. Let us con-
sider the following continuous-time UPPAM RNNs model:

τ
dxðtÞ
dt

¼ �xðtÞþAGðWxðtÞþqÞþb; x0ARN ð1Þ

where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xNðtÞÞT is the neural network state,
G¼ ðg1; g2;…; gNÞT is the nonlinear activation operator deduced
from all the activation functions gi, and G owns the uniformly
pseudo-projection-anti-monotone property. Both A and W are the
connective weight matrices, b, q are two fixed external bias vectors
and τ is the state feedback coefficient. The form of model (1)
includes two basic kinds of continuous-time RNNs [17], i.e., the
static RNNs and the local field RNNs. Furthermore, as proved in
[16], most activation operators are special cases of the UPPAM
operator. So, model (1) can be considered as a unified model of
continuous-time RNNs and can include almost all of the existing
continuous-time RNNs specials [4], e.g., Hopfield-type neural
networks, Brain-State-in-a-Box neural networks, Recurrent Back-
propagation neural networks, Mean-field neural networks, Bound-
constraints Optimization Solvers, Convex Optimization Solvers,
Recurrent Correlation Associative Memories neural networks, and
Cellular neural networks. In addition, since model (1) owns the
essential characteristics of the activation functions, i.e., the uni-
formly anti-monotone as well as the pseudo-projection properties,
it can be expected that the analysis of model (1), especially the
dynamics analysis can give more in-depth results and provide the
unified and concise characterization of the continuous-time RNNs
models. The main purpose of this paper will focus on discovering
some essential global convergence and stability for the unified
model (1), i.e., the critical convergence and stability.

For RNNs, one difficult problem of dynamics analysis lies in the
critical analysis. Define a discriminant matrix

SðΓ; PÞ ¼ΓP�ΓAWþðΓAWÞT
2

;

where Γ is a positive definite diagonal matrix, P is a diagonal
matrix defined by the network, and W and A are the weight
matrices. If there exist a positive definite diagonal matrix Γ, such
that SðΓ;2Λ�BÞ40 (i.e., SðΓ;2Λ�BÞ is positive definite), where Λ
and B are the anti-monotone and pseudo-projection constant
matrices of the network (the definitions of them are given in
Section 2), then RNNs have exponential stability [4]. Many stability
results have been achieved for RNNs individuals under various
specifications of SðΓ;2Λ�BÞ40 (typically, when SðΓ;2Λ�BÞ40 is
an M-matrix), and they are called as the non-critical dyn-
amical analysis [1]. On the other hand, if there exists a positive
definite diagonal matrix Γ such that SðΓ;VÞ is negative definite,
here V ¼ diagfr1; r2;…; rNg with each ri40 being the maximum
inversely Lipschitz constant of gi (i.e., for all s; tARN , jgiðtÞ�giðsÞj
Zri j t �sj ), then RNNs are globally exponentially unstable [7,1].
Since SðΓ;2Λ�BÞ40 is the sufficient condition on the globally
exponential stability of RNNs, and SðΓ;VÞZ0 is the necessar-
ycondition for RNNs to be globally stable, it is quite natural to
explore the gap between SðΓ;2Λ�BÞr0 (i.e., SðΓ;2Λ�BÞ is
negative semi-definite) and SðΓ;VÞZ0 (i.e., SðΓ;VÞ is positive
definite). Such a gap is called the general critical condition, and the
dynamics analysis of RNNs under such condition is referred to as
the general critical dynamics analysis.

For any application and practical design of RNNs, such as pat-
tern recognition, associative memories, or as optimization solvers,
the convergence and stability of RNNs are both prerequisite. For
instance, when an RNN is used in associative memory or pattern
recognition, any pattern we hope to store has to be an equilibrium
point of the RNN. In addition, to ensure that each stored pattern
can be retrieved even with noises, each equilibrium point must

possess the stability. When the RNN is employed as an optimiza-
tion solver, the possible optimal solutions correspond to the
equilibrium of the RNN, and the convergence of the RNN is a
guarantee of finding the optimal solutions. Since the general cri-
tical conditions can be considered essentially as the distinct region
of stability and non-stability of RNNs, studying the general critical
dynamic behaviors of an RNN can find broad applications.

Recently, due to the difficulty in the dynamical analysis of RNNs
for general critical conditions, most of the studies on critical
analysis have been focused on the special critical conditions, i.e.,
considering the asymptotic behaviors of RNNs under the condition
that SðΓ;2Λ�BÞZ0 (this is because SðΓ;2Λ�BÞ40 is already
known to be globally exponential stable and SðΓ;2Λ�BÞ ¼ 0 is a
special case of the general critical condition). Even for this special
critical condition, there only exist a few results since the analysis is
much more difficult than the dynamics analysis under the non-
critical condition that SðΛ; LÞ40. In [15], the globally exponential
stability of a static neural network with projection operator (a
special kind of UPPAM operator) has been proven under the con-
dition that I–W is nonnegative (which is a special case of
SðΓ;2Λ�BÞZ0). The special critical convergence of a static neural
network model with nearest point projection activation operator
(special case of projection operator) on a region defined by the
network has been achieved in [1] when W is quasi-symmetric.
Some general critical stability conclusions for the static and the
local field continuous-time RNNs with projection activation
operators have been achieved in [2], but they require the network
to satisfy one bounded matrix norm. In [4], for the presented
unified continuous-time RNNs, namely, UPPAM RNNs, the special
critical global convergence is obtained with some bound require-
ments on the defined nonlinear norm, but such requirements
cannot be verified easily in applications. In [5], some improve-
ments on dynamics analysis of the UPPAM networks have been
obtained, while they are still under the special critical conditions.

In the present paper, we give some solutions on how to assure
the convergence and stability under the general critical conditions.
By applying the energy function method and LaSalle invariance
principle to the unified continuous-time RNNs model (1), we
obtain the global convergence and asymptotic stability under
some general critical conditions, that is, SðΓ;2Λ�BÞþΨ is positive
definite for one diagonal matrix Ψ. The results only require the
network to satisfy some quasi-symmetric conditions on the con-
nection matrices. Since the conclusions obtained here are for the
unified RNNs model under the general critical conditions, they can
sharpen and generalize, to a large extent, the latest critical results
given by [1,2,4,5,15], and they can further be extended to those
non-critical conclusions (see, e.g., [6–14,18–25] and the references
quoted there). Furthermore, they can be applied directly to many
individual RNN models mentioned above. They can be widely
applied to solve the linear variational inequality and many other
optimization problems, etc. Therefore, the study here provides an
insight on the unified continuous-time RNNs model with critical
analysis.

2. Preliminaries

For the activation operator G, the domain, range and fixed-
point set of G are respectively defined by DðGÞ, RðGÞ and FðGÞ, and
DðGÞ ¼ RðGÞDRN . Assume that RN is embedded with Euclidean
norm J � J and inner product 〈�; �〉.

For any x¼ ðx1; x2;…; xNÞT ADðGÞ; write

GðxÞ ¼ ðg1ðxÞ; g2ðxÞ;⋯; gNðxÞÞT ; 8xADðGÞ
G is said to be diagonal if giðxÞ ¼ giðxiÞ holds for each i¼ 1;2;…;N.
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