
Sampling-based causal inference in cue combination
and its neural implementation

Zhaofei Yu a, Feng Chen a,b,n, Jianwu Dong a, Qionghai Dai a

a Center for Brain-Inspired Computing Research, Department of Automation, Tsinghua University, Beijing 100084, China
b Beijing Key Laboratory of Security in Big Data Processing and Application, Beijing 100084, China

a r t i c l e i n f o

Article history:
Received 2 July 2015
Received in revised form
11 October 2015
Accepted 14 October 2015
Communicated by X. Gao
Available online 24 October 2015

Keywords:
Causal inference
Importance sampling
Cue combination
Neural circuit

a b s t r a c t

Causal inference in cue combination is to decide whether the cues have a single cause or multiple causes.
Although the Bayesian causal inference model explains the problem of causal inference in cue combi-
nation successfully, how causal inference in cue combination could be implemented by neural circuits, is
unclear. The existing method based on calculating log posterior ratio with variable elimination has the
problem of being unrealistic and task-specific. In this paper, we take advantages of the special structure
of the Bayesian causal inference model and propose a hierarchical inference algorithm based on
importance sampling. A simple neural circuit is designed to implement the proposed inference algo-
rithm. Theoretical analyses and experimental results demonstrate that our algorithm converges to the
accurate value as the sample size goes to infinite. Moreover, the neural circuit we design can be easily
generalized to implement inference for other problems, such as the multi-stimuli cause inference and the
same-different judgment.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Human brain receives cues from multiple sensory modalities
and integrates them in an optimal way [1]. The cues from the
outside world are noisy observations of stimuli reflecting uncer-
tainty. It has been demonstrated that, if all cues have the same
cause, the optimal process of cue combination is a process of
Bayesian inference [2–5]. However, the truth is that, we receive
information from various sources simultaneously in our daily life,
which means the cues may come from different causes. How to
decide whether a single cause or multiple causes is responsible for
the cues, known as causal inference in cue combination, is an
important problem. This problem is the precondition of cue
combination and is quite common in our daily life [6,7]. For
example, at a cocktail party, we need to decide whether the face
and voice belong to the person who calls our name [8]. Recently,
the problem of causal inference in cue combination is partially
answered by Kording et al. [9] and Sato et al. [10], who propose the
Bayesian causal inference model. Their causal inference model
successfully explains the problem of causal inference in cue
combination. Yet, how causal inference in cue combination could
be implemented by neural circuit, is unclear. Solving this problem

benefits not only theoretical researches but also practical appli-
cations. On the one hand, it provides an explanation of how
human brain performs causal inference in cue combination,
building a bridge between probabilistic models of cognition and
neural mechanism. On the other hand, if the causal inference
could be implemented by neural circuits, a neural circuit prototype
can be easily developed to achieve the function of causal inference,
which could be applied in intelligent robots, enabling these robots
to perform causal inference.

Over the past decade, several methods with different prob-
ability codes have been proposed to perform probability inference
with neural circuits. Rao [11–13] establishes the relationship
between the dynamic equation of neural circuits and the inference
of probabilistic graphical models. He proves that the process that
the firing rate of neurons in the recurrent neural circuit varies with
respect to time is a process of posterior probabilities inference in a
hidden Markov model, under the condition that the firing rate is
proportional to the log of posterior probabilities. Ott and Stoop
[14] build the relationship between the dynamical equation of
continuous Hopfield network and belief propagation on a binary
Markov random field. Sampling is another commonly accepted
way to perform inference by neural circuits. Based on Monte Carlo
sampling, Huang and Rao [15] build a spiking network model to
perform approximate inference for any hidden Markov model.
Maass et al. [16–18] propose that stochastic networks of spiking
neurons could implement inference for graphical models by
Markov chain Monte Carlo. Shi and Griffiths [19] apply importance
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sampling to perform inference of chain Bayesian model and design
neural circuits to implement it. Another important framework is
Probabilistic population coding (PPC), the core idea of which is
that the neurons are encoders of distributions, instead of the
values of variables [20–22]. Ma et al. [20] present that the infer-
ence of cue integration can be conducted simply by linear com-
binations of each population activity with PPC. The method is
exploited thereafter by Beck et al. [23] to realize the Bayesian
decision making and the inference of marginalization [24].

To the best of our knowledge, the only work implementing causal
inference in cue combination with neural circuits is proposed by Ma
et al. [25] in 2013. They calculate the ratio of the posterior prob-
abilities of both situations (a single cause or multiple causes) with
variable elimination and design a neural circuit to implement it. This
method suffers from three shortcomings. Firstly, the circuit they
design is task-specific and only works on two stimuli. If we want to
implement multi-stimuli causal inference [26] with the same
method, the circuit will be completely different. What is more, the
required number of operations increases faster than linear with
respect to the number of stimuli, which makes the neural circuit
unrealistic [25]. Secondly, it is hard to generalize the circuit to
implement a similar task called same-different judgment [27].
Thirdly, since how to implement logarithmic operations with neu-
rons remains unknown, approximations are taken in their neural
circuit so that they could only get near-optimal results.

In this paper, different from calculating the posterior ratio with
variable elimination in [25], we propose a hierarchical inference
algorithm based on importance sampling, which takes advantages of
the special structure of the causal inference model. A neural circuit
with hierarchical structure is then designed corresponding to the
bottom-up inference process. The proposed method has three
advantages. Firstly, the neural circuit is simple and easy to be realized
by PPC and some simple plausible neural operations. Secondly, it is
easy to generalize this neural circuit to implement inference for other
problems, such as the multi-stimuli cause inference and the same-
different judgment. Thirdly, a theoretical proof is given that the
sampling-based method converges to the accurate value with prob-
ability one as sample size tends to infinity.

The rest of this paper is organized as follows. Section 2 briefly
reviews the causal inference in cue combination. In Section 3 we
present a sampling-based inference algorithm and design the
corresponding neural circuit. The experimental results are shown
in Section 4. We generalize our method to solve other two pro-
blems in Section 5 and make a conclusion in Section 6.

2. The causal inference model in cue combination

The problem of causal inference in cue combination is to infer
whether cues come from a single or multiple causes. Kording et al.

[9] and Sato et al. [10] propose a causal inference model of cue
combination respectively, which could explain physiological and
psychological experiments successfully. Here, we briefly review this
model and the stimuli considered here only include visual and
auditory ones. The multi-stimuli problemwill be explained in Section
5. In Fig. 1, node C represents the common-cause variable, S, S1, and
S2 express the stimuli. X1 and X2 are cues received by the sensory
system. The state of cause C is 1 or 2, where C¼1 means the cues
have the same cause and C¼2 means the cues have two different
causes. For simplicity, we assume that P C ¼ 1ð Þ is equal to P C ¼ 2ð Þ,
both of which have a probability 0.5. When C¼1, there is a stimulus S
with distribution P(S) corresponding to the common cause, where P
(S) is a Gaussian distribution with mean 0 and variance σS2. Two
measurements X1 and X2 are generated from two Gaussian dis-
tributions with different variances σ2

1 and σ2
2, but with the same

mean S. When C¼2, there are two different stimuli S1 and S2, which
are drawn from the same Gaussian distribution with mean 0 and
variance σS2. Then two measurements X1 and X2 are drawn from two
different Gaussian distributions with their means being S1 and S2,
and their variances being σ2

1 and σ2
2 respectively. Based on the

definitions above, the causal inference problem is to decide whether
C¼1 or C¼2 according to the measurements X1 and X2.

3. Sampling-based causal inference in cue combination

In this section, we first convert the causal inference model to a
three-layer Bayesian network. Then we propose a sampling-based
hierarchical inference method and design the corresponding
neural circuit. After that we demonstrate that this circuit can be
realized by PPC and simple plausible neural operations.

3.1. The three-layer Bayesian network model

In this paper, the problem is to infer the state of node C. In
order to simplify inference, we convert the causal inference model
above to a three-layer Bayesian model (Fig. 2) with some appro-
priate prior probabilities and conditional probabilities. In the new
model, node C is the common-cause variable, which is similar to
that in the causal inference model. S1 and S2 refer to two different
stimuli, such as visual and auditory stimuli. The conditional
probability of S1 and S2 under C is expressed as P S1; S2 jCð Þ. We
define P S1; S2 jC ¼ 1ð Þ ¼ δ S1�S2ð Þ 1ffiffiffiffiffi

2π
p

σS
exp � S21

2σ2
S

� �
and P S1; S2 jð

C ¼ 2Þ ¼ 1
2πσ2

S
exp �S21 þ S22

2σ2
S

� �
, where δ S1�S2ð Þ is the Dirac Delta dis-

tribution. X1 and X2 are measurements from S1 and S2 respectively.
The conditional probability of X1 under S1 is defined by P X1 j S1ð Þ

= 1 = 2

1 2

1 2 1 2

Fig. 1. The causal inference model in cue combination.
Fig. 2. The three-layer Bayesian network equivalent to the causal inference model
in Fig. 1.
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