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a b s t r a c t

Robust principal component analysis (RPCA) has been widely used to deal with high dimensional noisy
data in many applications. Traditional RPCA approaches consider all the samples to recover the low
dimensional subspace in a batch manner, which incur expensive storage cost and fail to update the low
dimensional subspace efficiently for stream data. Thus it is urgent to develop online RPCA methods. In
this paper, we propose a novel online RPCA algorithm by adopting a recently proposed truncated nuclear
norm as a tighter approximation of low rank constraint. Then we decompose the objective function as a
summation of sample-wise cost. And we design an efficient alternating optimization algorithm in an
online manner. Experimental results show that our proposed method can achieve more accurate low
dimensional subspace estimation performance compared with state-of-the-art online RPCA algorithms.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In many machine learning and data mining problems, one often
encounters high-dimensional samples, which may contain noise
caused by corruptions or outliers [26]. To recover the intrinsic low-
dimensional subspace from the whole sample set, robust principal
component analysis (RPCA) is intensively studied in recent years
[20,3,17,2,23,21,5,25] and widely applied such as video surveil-
lance [22], image alignment [15], document corpus modeling [14]
and audio processing [10], to name a few.

In principle, a typical RPCA method assumes that the sample
set can be divided into a low-dimensional component and a sparse
noise component. Formally, given a sample matrix ZARm�n, RPCA
attempts to decompose Z as the summation of a low rank matrix X
and a sparse matrix E:

min
X;E

rankðXÞþλJEJ0;

s:t: Z ¼ XþE; ð1Þ

where λ is a regularization parameter.
It has been shown that the low dimensional subspace can be

accurately and efficiently recovered from corrupted samples under
suitable conditions [22,2]. However, the problem (1) is highly non-
convex and intractable due to the rank function and l0 norm [16].

Most researchers are seeking appropriate surrogates of the rank
function and the l0 norm and then transforming the problem (1) to a
convex optimization problem [3,12,21,17]. Among them, Lin et al.
applied augmented Lagrange multipliers to solve the obtained con-
vex problem [12]. Shang et al. and Tao et al. further considered a
more general case where the observation is missing and grossly
corrupted, and proposed a unified framework combining RPCA and
matrix competition models [17,21].

All the above works tackle this problem in a batch manner. That
is, all samples are involved into iteration in the process of opti-
mization, thus subject to two aspects of limitations. On one hand,
storage cost is expensive to load all the samples in memory during
the optimization procedure, especially unacceptable for large scale
sample set. This is becoming a great challenge in big data era. On
the other hand, if the samples are collected in a stream way, these
methods cannot efficiently update the low dimensional subspace
when a new sample is coming.

To address these problems, online approaches for RPCA emerged
recently. The memory cost is independent of the scale of samples and
the discovered low dimensional subspace updates quickly as a
sample comes. Another important advantage of online robust PCA
over batch methods is that it can track the dynamic low dimensional
subspace in cases where the subspace changes with time. Thus
online robust PCA can be applied to handle tasks such as video
surveillance with moving cameras [4]. Goes et al. extended the batch
version RPCA to the stochastic setting and provided a sub-linear
convergence guarantee [5], reducing storage requirement and run-
time complexity significantly. He et al. proposed an online robust
adaptive subspace tracking algorithm on Grassmannian manifold [7],
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which combines the augmented Lagrangian with the classic sto-
chastic gradient framework. Mairal proposed a more general online
dictionary learning scheme for sparse coding [13] based on stochastic
approximation. Inspired by this, Feng et al. [4] and Shen et al. [18]
attempt to solve RPCA problem in an online way. They adopt nuclear
norm [16] and max norm [19] as surrogates of the rank function in
the problem (1) respectively, then both nuclear norm and max norm
can be represented in a matrix factorization form to handle
sequential samples. Although convex envelopes of rank function, like
nuclear norm and max norm, bring convenience in optimization
procedure, they may result in nontrivial approximation error in
realistic scenario [1]. Therefore, some researchers attempted to
design nonconvex surrogate for rank function [20] and achieved
more accurate approximation.

In this paper, we aim to address RPCA problem through an
online nonconvex optimization framework. Specially, we replace
the objective of minimizing matrix rank by minimizing a recently
proposed truncated nuclear norm of matrix [24]. The truncated
nuclear norm can also be represented in a matrix factorization
form, which provides insight into estimating the incremental
contribution produced by each novel sample to the whole trun-
cated nuclear norm. Based on this, we propose an online scheme
to update the low dimensional subspace as a new sample comes.
Then we design an efficient iterative optimization method for
implementation. Since minimization of truncated nuclear norm
provides a tighter constraint to matrix rank, our algorithm can
recover the low dimensional subspace more accurately. Extensive
numerical results demonstrate the effectiveness of our algorithm.

The main contribution of this paper relies on the following two
aspects:

� we propose an online scheme to solve RPCA problem by
adopting a nonconvex surrogate of matrix rank, which is a
tighter approximation compared with convex surrogates.

� we design an efficient optimization algorithm for the proposed
objective function.

The rest of this paper is organized as follows: in Section 2, we
introduce necessary background for our method. In Section 3, we
propose the online RPCA scheme based on truncated nuclear
norm. In Section 4, we design an efficient optimization algorithm
to solve the objective function. Experiments are conducted to
evaluate our algorithm in Section 5. Finally, conclusions are made
in Section 6.

2. Preliminaries

Notations: Throughout this paper, we adopt upper case letters
for matrices, e.g. X, and lower case letters for vectors, e.g. v. Xij is
the (i,j)th entry of a matrix X. JX J1, JX Jn, JX JF stand for l1 norm,
nuclear norm, Frobenius norm of a matrix respectively. TrðXÞ
stands for the trace of a square matrix X. JvJ1 and JvJpðpZ0Þ
stands for the lp norm of a vector v and 〈u; v〉 stands for the inner
product of vectors u and v. I stands for identical matrix.

Norm selection plays a central role in matrix related optimi-
zation problems. Although nuclear norm and max norm are two
popular alternatives to substitute the low rank constraint, the
truncated nuclear norm (TNN) recently proposed by Zhang et al.
[24] was shown to provide a tighter and more robust approximate
to the matrix rank, compared with (standard) nuclear norm, in
various applications [24,9,8,27].

Given a matrix XARm�n and a nonnegative integer sominðm;nÞ,
the truncated nuclear norm JX J s of X is defined as the sum of min
ðm;nÞ�s minimum singular values of X, i.e., JX J s ¼

Pminðm;nÞ
i ¼ sþ1 σiðXÞ,

where σ1ðXÞZ⋯Zσminðm;nÞðXÞ, where σ1ðXÞ;…;σminðm;nÞðXÞ are sin-
gular values of X. In other words, JX J s leaves free those s largest
singular values from JX Jn. The relationship between JX J s and JX Jn

has been illustrated in [24], as follows:

JX J s ¼ JX Jn� max
UUT ¼ I;VVT ¼ I

TrðUXVT Þ; ð2Þ

where UARs�m;VARs�n.
In this equation, there is no obvious relation between truncated

nuclear norm and each sample, thus it is hard to estimate the
contribution of each sample to the truncated nuclear norm indi-
vidually. Fortunately, the nuclear norm can be factorized in the
following form [19]:

JX Jn ¼ min
X ¼ LRT

1
2
ð‖L‖2F þ‖R‖2F Þ; ð3Þ

where LARm�d;RARn�d for any dZ rank ðXÞ. Eqs. (2) and (3)
suggest that JX J s can be formulated in the following minimiza-
tion problem:

Lemma 2.1. The truncated nuclear norm of X can be expressed as

JX J s ¼ min
L;R;U;V

1
2
‖L‖2F þ

1
2
‖R‖2F �TrðULRTVT Þ;

s:t: X ¼ LRT ;UUT ¼ I;VVT ¼ I; ð4Þ
where UARs�m;VARs�n; LARm�d;RARn�d, dZrankðXÞ.

Proof. For any U;V ; L, and R satisfying X ¼ LRT ;UUT ¼ I;VVT ¼ I.
Eqs. (2) and (3) imply

JX J s ¼ JX Jn�max
U;V

TrðUXVT Þ

r1
2
‖L‖2F þ

1
2
‖R‖2F �max

U;V
TrðUXVT Þr1

2
‖L‖2F þ

1
2
‖R‖2F �TrðUXVT Þ

ð5Þ
On the other hand, suppose the singular value decomposition of X
is X ¼ PΣQT , where P ¼ ðp1;…; pmÞARm�m;Q ¼ ðq1;…; qnÞARn�n

and ΣARm�n. Let Û ¼ ðp1;…; psÞT and V̂ ¼ ðq1;…; qsÞT , then [24]

TrðÛXV̂
T Þ ¼

Xs
i ¼ 1

σiðXÞ: ð6Þ

Let L̂ ¼ PΣ1=2 and R̂ ¼ QΣ1=2, then it is straightforward to verify
that X ¼ L̂R̂

T
and

JX Jn ¼ 1
2 ‖L̂‖

2
F þ1

2 J‖R̂‖
2
F : ð7Þ

Therefore,

JX J s ¼ JX Jn�
Xs
i ¼ 1

σiðXÞ ¼
1
2
‖L̂‖2F þ

1
2
J‖R̂‖2F �TrðÛXV̂

T Þ:□ ð8Þ

This factorization provides a representation of JX J s based on
dimensionality reduction. In this way, L can be regarded as a dic-
tionary, then each column of R is the coefficient of a sample with
respect to the dictionary L. Further decomposationdecomposition of
the Frobenius norm in Eq. (4) will illustrate the explicit relationship
between JX J s and each sample, as we present in the next section.

3. The proposed algorithm

In this section, we propose our online algorithm for the RPCA
problem, which is named as online robust principal component
analysis via truncated nuclear norm regularization (OTNNR). The
main idea of our method is to take a tighter, though nonconvex,
approximation to the rank operator, and then exploit an online
way to solve the optimization problem. So the low dimensional
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