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a b s t r a c t

In this paper, a relaxed stabilization problem for a class of Takagi and Sugeno (T–S) fuzzy time-delay
systems is explored. By utilizing homogeneous polynomials scheme and Pólya's theorem, a relaxed
delay-dependent stabilization condition is proposed. In addition, a novel slack matrix scheme is pre-
sented for stabilization condition of a class of T–S fuzzy time-delay systems in terms of linear matrix
inequalities (LMIs). Lastly, a well-know numerical example and a truck-trailer example are given to
demonstrate that the proposed stabilization condition can provide a longer allowable delay time than
some existing studies.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Takagi–Sugeno (T–S) fuzzy-model-based method is widely
adopted to investigate the control synthesis and stabilization
problems of nonlinear systems. For system modeling, the T–S
fuzzy model provides an effective and systematic framework to
represent the nonlinear system as an average weighted sum of
some linear-type subsystems. By examination of the controller
design problem, the fuzzy controller can be designed via the par-
allel distributed compensation (PDC) scheme [1,2] to stabilize T–S
fuzzy systems. The output of the overall fuzzy controller is a fuzzy
blending of each individual linear controller. Moreover, linear
matrix inequalities (LMIs) have been widely adopted to solve the
stability and stabilization problems of T–S fuzzy control system.

In past few decades, T–S fuzzy time-delay systems have been
successfully applied in chemical engineering and other industrial
processes [3]. These results can be roughly classified into two
types: one is independent of the size of the delay, i.e., the so-called
“delay-independent” condition [4,5], while the other is concerned
with the delay size, which is called as the “delay-dependent”
condition. It has been recognized that the latter is less con-
servative than the former. Therefore, many various delay-
dependent stabilization conditions are proposed in recent years.

For example, a previous study [6] proposed a delay partition
method for T–S fuzzy time-delay systems to reduce the con-
servatism. The free-weighting matrix approach has been
employed to obtain the delay-dependent stabilization condition
for discrete T–S fuzzy time-delay system in [7]. In [8], the small-
gain theorem is adopted to convert discrete-time system and the
less conservative stability and stabilization conditions are thus
obtained. By combining delay-decomposition with state vector
augmentation, a novel Lyapunov–Krasovskii function is proposed
and a novel stability condition is formulated in the form of LMI in
[9]. Although these studies proposed worth results, there leaves
much room to further extend the delay time of T–S fuzzy time-
delay systems. Hence, how to further reduce the conservatism for
T–S fuzzy time-delay systems is still an important problem.

Recently, there are some studies investigating the relaxed sta-
bility and stabilization problems by using polynomial technique
[10,11]. For example, in [12], homogeneous polynomial Lyapunov
functions are proposed to explore the stability problem of linear
systems with time-varying structured uncertainties. By utilizing
homogeneous polynomial Lyapunov function and Pólya's theorem,
a relaxed asymptotically necessary and sufficient condition is
proposed to reduce the conservatism of the stabilization condition
for T–S fuzzy systems in [13]. In [14], the local stability and sta-
bilization conditions for discrete-time T–S fuzzy system are
explored via homogeneous polynomial parameter-dependent
matrix.

In addition to homogeneous polynomial technique, right-hand-
side (RHS) technique was another technique which can reduce the
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conservatism of the stability/stabilization condition [15–17].
Tanaka et al. [18] firstly proposed a RHS slack variable matrix to
reduce the conservatism of the stabilization condition for T–S
fuzzy systems. By collecting the interaction between each sub-
system into a single matrix and adopting the S-procedure, a
relaxed quadratic stability condition for fuzzy control system was
proposed in [19]. Instead of two constant slack variable matrices in
[19] by two transport constant matrices, a novel relaxed stabili-
zation condition was proposed in [20]. Furthermore, by the
property of

Pr
i ¼ 1 hi ¼ 1, [21] proposed a LMI-based quadratic

relaxed stabilization condition. The information of the lower and
upper membership functions are employed and novel slack
matrices are proposed to obtain the membership function
dependent stability conditions for the interval type-2 fuzzy sys-
tems in [17]. However, few studies explore T–S fuzzy time-delay
systems by using polynomial technique and RHS technique.
Therefore, in this study, we will adopt polynomial technique and
RHS technique to explore the stabilization problem of T–S fuzzy
time-delay systems.

Considering the advantages of homogeneous polynomial and
RHS techniques, this paper explores the relaxed stabilization
condition of T–S fuzzy time-delay systems. The main contributions
of this paper includes (i) a relaxed Pólya stabilization condition for
T–S fuzzy time-delay systems in LMIs; and (ii) a novel RHS
relaxation scheme for further relaxation.

The rest of this paper is organized as follows. In Section 2, the
delay-dependent stabilization problem for T–S fuzzy time-delay
systems is introduced. Based on homogeneous polynomial tech-
nique and Pólya's theorem, the stabilization conditions for T–S
fuzzy time-delay systems are presented in LMI form. Besides, a
novel RHS polynomial slack matrix is proposed in Section 3 to
reduce the conservativeness. In Section 4, a numerical example
and a truck-trailer example are given to demonstrate that the
proposed stabilization condition provides longer allowable delay
times than existing ones. Finally, conclusions are given in
Section 5.

2. Preliminaries

The following notations are used throughout this paper. The
symbol ⋆ indicates transposed elements in an LMI, which can be
obtained via transpose operation, denoted by T. HðtÞ ¼Pr

i ¼ 1 hiðξðtÞÞHi, where hiðξðtÞÞ40 and
Pr

i ¼ 1 hiðξðtÞÞ ¼ 1. Diag
denotes a block diagonal matrix. I is the identity matrix with a
compatible dimension. ! denotes factorial for combinatoric
expression. � is Kronecker product. K(h) be the set of r-tuples
defined as [22]:

KðhÞ ¼ ðk1k2⋯krÞ : k1þk2þ…þkr ¼ h; 8kiA Iþ ðpositive integersÞ;�
i¼ 1;2;…; r

�
where h is the total polynomial degree. Since the number of fuzzy
rules is r, the number of elements in K(h) is expressed by
JðhÞ ¼ rþh�1ð Þ!=ðh!ðr�1Þ!Þ. For example, r¼ 2, h¼ 4

Jð4Þ ¼ 2þ4�1ð Þ!=ð4!ð2�1Þ!Þ ¼ 5

Kð4Þ ¼ ð40Þ; ð31Þ; ð22Þ; ð13Þ; ð04Þ� �¼ tð1Þ; tð2Þ; tð3Þ; tð4Þ; tð5Þ� �
¼ ðh41h02Þ; ðh31h12Þ; ðh21h22Þ; ðh11h3

2Þ; ðh0
1h

4
2Þ

n o
:

For clarity, the following notations are adopted:

k¼ k1k2⋯kr ;h
k ¼ hk1

1 hk2
2 ⋯hkr

r ; ei ¼ 0⋯ 1|{z}
ith

⋯0

k�ei ¼ k1k2⋯ ki�1ð Þ⋯kr ;πðkÞ ¼ k1!ð Þ k2!ð Þ⋯ kr!ð Þ

Ck
iiðhÞ ¼

ðh!Þkiðki�1Þ
πðkÞ ; Ck

ijðhÞ ¼
ðh!Þkikj
πðkÞ :

The T–S fuzzy model is expressed in terms of fuzzy IF-THEN
rules. To begin, consider the following ith rule of a T–S fuzzy time-
delay system.

Rule i : IF ξ1ðtÞ is M1ðtÞ and ⋯ and ξpðtÞ is MipðtÞ
THEN _xðtÞ ¼ ðAiþΔAiÞxðtÞþðAdiþΔAdiÞxðt�σðtÞÞþðBiþΔBiÞuðtÞ

ð1Þ
where xðtÞ ¼ϕðtÞ; tA ½�maxfσMg;0�, ξ1ðtÞ, ξ2ðtÞ, ⋯; ξpðtÞ are pre-
mise variables, Mij(t), i; j¼ 1;2;⋯, r are fuzzy sets, where r is the
number of fuzzy rules. xðtÞARn�1 is the state, uðtÞARm�1 is the
input, and σM is the upper bound of delay time. The matrices Ai,
AdiARn�n and BiARn�m are system matrices, and the initial vector
ϕðtÞ belongs to the set of continuous functions. ΔAi, ΔAdi and ΔBi

are unknown matrices representing time-varying parameter
uncertainties and are assumed to be of the following matched
form, stated in Assumption 1. σðtÞ is the time-varying delay in the
state and satisfies that

0rσðtÞrσM ; 0r _σ ðtÞrσD ð2Þ
where σM and σD are constants. That is, the time-varying delay is
differentiable and its derivative is bounded.

Assumption 1 (Tsai [3]). The parameter uncertainties considered
here are norm-bounded and presented in the form

ΔAi ¼MaiGiðtÞNai; ΔAdi ¼MdiGiðtÞNdi; ΔBi ¼MbiGiðtÞNbi

where Mai, Mdi, Mbi, Nai, Ndi, Nbi and Gi(t) are unknown matrix
functions with Lebesgue-measurable elements and satisfy
GT
i ðtÞGiðtÞr I.

For convenience, the following notations are defined.
Aci ¼ AiþΔAi, Acdi ¼ AdiþΔAdi and Bci ¼ BiþΔBi. Similar to [1],
using a center average defuzzifier, product inference, and a sin-
gleton fuzzifier, the overall uncertain T–S fuzzy time-delay system
can be expressed as in the following equation:

_xðtÞ ¼
Xr
i ¼ 1

μiðξðtÞÞ AcixðtÞþAcdixðt�σðtÞÞþBciuðtÞð Þ=
Xr
i ¼ 1

μiðξðtÞÞ

¼
Xr
i ¼ 1

hiðξðtÞÞ AcixðtÞþAcdixðt�σðtÞÞþBciuðtÞð Þ

¼ AcðtÞxðtÞþAcdðtÞxðt�σðtÞÞþBcðtÞuðtÞ ð3Þ
where μiðξðtÞÞ ¼∏p

i ¼ 1MijðξðtÞÞ, hi ¼ μiðξðtÞÞ=
Pr

i ¼ 1 μiðξðtÞÞ,
Pr

i ¼ 1 hi
ðξðtÞÞAci ¼ AcðtÞ,

Pr
i ¼ 1 hiðξðtÞÞAcdi ¼ AcdðtÞ, and

Pr
i ¼ 1 hiðξðtÞÞBci

¼ BcðtÞ. MijðξðtÞÞ is the membership degree of ξðtÞ, and
ξðtÞ ¼ ξ1ðtÞ;…; ξnðtÞ

� �
. Two basic properties of μiðξðtÞÞ are μiðξðtÞÞ

Z0 and
P

i ¼ 1μiðξðtÞÞ40. It is clear that
Pr

i ¼ 1 hiðξðtÞÞZ0, andPr
i ¼ 1 hiðξðtÞÞ ¼ 1.
The state feedback fuzzy controller for T–S fuzzy time-delay

system (3) is represented as follows

uðtÞ ¼
X

kAKðr�1Þ;rZ2

hkFkxðtÞ ¼ FðtÞxðtÞ ð4Þ

where FkARm�n is the controller gain matrix.
By substituting (4) into (3), the closed-loop system can be

obtained as

_xðtÞ ¼ AcðtÞþBcðtÞFðtÞð ÞxðtÞþAcdðtÞxðt�σðtÞÞ ð5Þ

3. Main results

Before discussing the proof of the theorems, the following
results, which are used in the proof of theorems, are given.
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