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a b s t r a c t

Approximation capabilities of the spherical neural networks (SNNs) are considered in this paper. Based
on a known Taylor formula, we prove that, for non-polynomial target function, rates of simultaneously
approximating the function itself and its (Laplace–Beltrami) derivatives by SNNs is not slower than those
by the spherical polynomials (SPs). Then, the simultaneous approximation rates of SPs automatically
derive the rates of SNNs.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Spherical data abound in geodesy, meteorology, astrophysics,
geophysics, and other areas [8,9]. For example, the mathematical
models of some satellite missions such as the GOCE (Gravity Field
and Steady-State Ocean Circulation Explorer) and the CHAMP
(Challenging Mini-Satellite Payload for Geophysical Research and
Application) which study the gravity potential of the earth are
spherical Fredholm integral equations of the first kind [11]. Hence,
finding a tool which can efficiently tackle spherical data becomes
more and more important.

A basic and classical tool for fitting scattered data on the sphere
is the spherical polynomial (SP). Up till now, the approximation
capability of SPs has been widely studied [36]. For example, Dit-
zian [7] deduced a Jackson-type error estimate and its Stechkin-
type inverse for SPs; Sloan [34] constructed a hyperinterpolation
operator, which is an SP, and deduced the approximation error
bound; Dai [5] provided a weighted Jackson inequality for SPs. The
main algorithm to implement the SP approximation is the singular
value decomposition approach [19]: Expand a function with
respect to the orthonormal basis and estimate the corresponding
Fourier coefficients. But it is well-known that the spherical har-
monic basis is badly localized and incapable of representing local
features of the target function, which is important in geophysics
applications [10]. Therefore, one turns to find a tool which

possesses nice localization performance. Consequently, spherical
basis function (SBF) and spherical neural networks (SNNs) come
into our sights.

SBF refers to a positive definite function on the ðdþ1Þ-dimen-
sional unit sphere Sd. Here a positive definite function on Sd means
the matrix Aϕ≔ðϕð〈xi; xj〉ÞMi;j ¼ 1 is positive definite [17, Def. 2.7]. The
SBF method focuses on using the linear combination of shifts of
SBF on the spherical data. Mathematically, the approximant is
formed as

x↦
XM
i ¼ 1

ciϕð〈xi; x〉Þ; xASd; ciAR; ð1:1Þ

where ϕ is an SBF, xi is the spherical data and 〈x; y〉 denotes the
inner product in Rdþ1. There are two topics on the SBF approx-
imation. The first one is the density problem which concerns
whether the approximant (1.1) can approximate arbitrary con-
tinuous function within arbitrary accuracy, provided the number
of spherical data is sufficiently large and the coefficients fcigMi ¼ 1 are
appropriately tuned. In the seminal paper [35], Sun and Cheney
derived the sufficient and necessary conditions for the density of
SBF approximation. The other one called the complexity problem
is to determine how many samples are necessary to yield a pre-
scribed degree of approximation by using the SBF approximant
(1.1). For this problem, Mhaskar et al. [27] gave an upper bound of
approximation by using the positive cubature and Marcinkiewicz–
Zygmund inequality. They utilized the summation of the best
approximation error of SPs and a residual depending on the
smoothness of the SBF to bound the approximation error of the
SBF approximant (1.1). Some studies for the SBF approximation can
also be found in [4,14,16,21,30,32,33] and references therein.
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A typical way to derive the SBF approximant is to use the least
squares, which has already been proved to posses perfect
approximation capability [12].

Besides the SBF method, [23] also proposed the SNN which
formed as

XM
i ¼ 1

aiσð〈wi; x〉þbiÞ; ð1:2Þ

where, wiARdþ1, aiAR, biAR are the inner weight, outer weight,
threshold of the SNN, respectively, and σ is named as the activa-
tion function in the terminology of neural networks [13]. It can be
easily found that if σ is positive definite, wi is the data point and
bi¼0, then the SNN defined above coincides with the SBF
approximant (1.1). In our previous paper [23], we theoretically
proved that there exists an SNN which possesses essentially better
approximation capability than the SP and SBF methods in the
sense that SNN can deduce a similar approximation error by using
much smaller M. However, the results in [23] do not present any
hints in selecting the activation function and the related para-
meters. The aim of the present paper is to pursue the approx-
imation capability of a large range of SNNs and provide a guidance
about how to select the activation function and the corresponding
parameters.

On the other hand, simultaneous approximation of a function and
its derivatives are required in many science and engineering applica-
tions. There have been many studies on the problem of simultaneous
approximation by neural networks on Rdþ1[1,22,37,38]. We also
pursue the simultaneous approximation capability of SNN in this
paper. By using a representation theorem and a Taylor formula, we
firstly construct an SNN and use it and its (Laplace–Beltrami) deriva-
tives to approximate SPs and their (Laplace–Beltrami) derivatives.
After introducing the best approximation operator on the sphere and
using the commutativity of the best approximation operator and the
Laplace–Beltrami operator, we then derive the upper bound of
simultaneous approximation error of SPs. Under this circumstance, a
quantitative upper bound estimate on simultaneous approximation by
SNNs can be derived. The obtained results reveal that the simulta-
neous approximation rate of the constructed SNN depends not only on
the number of hidden units used, but also on the smoothness of
functions to be approximated. Furthermore, it can be deduced that, for
non-polynomial target functions the rate of simultaneous approx-
imation by SNNs is not slower than that by SPs.

The paper is organized as follows. In the next section, some
preliminaries together with a representation theorem of SPs will
be given. In Section 3, the upper bound of simultaneous approx-
imation by SNNs will be established. In the last sections, we will
give the proofs of the main results.

2. Spherical harmonics

Denote by LpðSdÞð1rpr1Þ the space of p-th Lebesgue
integrable functions on Sd endowed with the norms

J f J≔J f ð�ÞJ L1ðSdÞ≔ess sup
xASd

j f ðxÞj ; p¼1;

and

J f Jp≔J f ð�ÞJ LpðSdÞ : ¼
Z
Sd
j f ðxÞj pdωðxÞ

� �1=p

o1; 1rpo1:

We denote by dω the surface area element on Sd. The volume of Sd

is denoted by Ωd, and it is easy to deduce that

Ωd≔
Z
Sd

dω¼ 2πðdþ1Þ=2

Γ
�dþ1

2

�:

For integer kZ0, the restriction to Sd of a homogeneous har-
monic polynomial of degree k on the unit sphere is called a
spherical harmonic of degree k. The span of all spherical harmo-
nics of degree k is denoted by Hd

k , and the class of all SPs of degree
krn is denoted by Πn

d. It is obvious that Πd
n ¼ �n

k ¼ 0 H
d
k . The

dimension of Hd
k is given by

Dd
k≔dim Hd

k ¼
2kþd�1
kþd�1

kþd�1
k

� �
; kZ1;

1; k¼ 0;

8<
:

and that of Πn
d is

Pn
k ¼ 0 D

d
k ¼Ddþ1

n � nd, where A� B denotes that
there exist absolute constants C1 and C2 such that C1ArBrC2A.

Spherical harmonics have an intrinsic characterization. To
describe this, we first introduce the Laplace–Beltrami operator Δ,
which is defined by [31]:

Δf≔
Xdþ1

i ¼ 1

∂2gðxÞ
∂x2i

�����
j xj≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ⋯þx2

dþ 1

p
¼ 1

; gðxÞ ¼ f
x
jxj


 �
:

It is well-known that the operator Δ is an elliptic, (unbounded)
selfadjoint operator on L2ðSdÞ, is invariant under arbitrary coordi-
nate changes, and its spectrum comprises distinct eigenvalues �
λk≔�kðkþd�1Þ; k¼ 0;1;…; each having finite multiplicity. The
space Hd

k can be characterized intrinsically as the eigenspace cor-
responding to λk, i.e.

ΔHk ¼ �λkHk; HkAHd
k : ð2:1Þ

Since λks are distinct, and the operator is selfadjoint, the spaces Hd
k

are mutually orthonormal; also, L2ðSdÞ ¼ closuref�kH
d
kg. Hence, if

we choose an orthonormal basis fYk;l : l¼ 1;…;Dd
kg for each Hd

k ,
then the set fYk;l : k¼ 0;1;…; l¼ 1;…;Dd

kg is an orthonormal basis
for L2ðSdÞ.

The well-known addition formula [36] is given by

XDd
k

l ¼ 1

Yk;lðxÞYk;lðyÞ ¼
Dd
k

Ωd
Pdþ1
k ð〈x; y〉Þ; ð2:2Þ

where Pdþ1
k is the Legendre polynomial with degree k and

dimension dþ1. The Legendre polynomial Pdþ1
k can be normalized

such that Pdþ1
k ð1Þ ¼ 1; and satisfies the orthogonality relationZ 1

�1
Pdþ1
k ðtÞPdþ1

j ðtÞð1�t2Þðd�2Þ=2 dt ¼ Ωd

Ωd�1D
d
k

δk;j;

where δk;j is the usual Kronecker symbol.
The following Funk–Hecke formula [36] plays an important role

in computing the eigenvalues of the kernel ϕAL1ð½�1;1�Þ.Z
Sd
ϕð〈x; y〉ÞHkðyÞ dωðyÞ ¼ Bðϕ; kÞHkðxÞ; ð2:3Þ

where

Bðϕ; kÞ≔Ωd�1

Z 1

�1
Pdþ1
k ðtÞϕðtÞð1�t2Þðd�2Þ=2 dt:

In order to reveal the simultaneous approximation capability of
SNNs, we need the following representation theorem, which was
proven in [23].

Lemma 1. Let nAN. Then for any PnAΠd
n, there exists a set of points

fakgD
d
n

k ¼ 1 � Sd and a set of univariate polynomials fgkgD
d
n

k ¼ 1 defined on
½�1;1� with degrees not larger than n such that

PnðxÞ ¼
XDd

n

k ¼ 1

gkð〈ak; x〉Þ; xASd: ð2:4Þ

From the classical representation theorem (Theorem 3 of [31]),
we know that every SP can be represented by a combination of

S. Lin, F. Cao / Neurocomputing 175 (2016) 348–354 349



Download English Version:

https://daneshyari.com/en/article/407166

Download Persian Version:

https://daneshyari.com/article/407166

Daneshyari.com

https://daneshyari.com/en/article/407166
https://daneshyari.com/article/407166
https://daneshyari.com

