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Lithium battery is a reliable source for mobile, computers and electric vehicles. However, the internal
chemical reaction of lithium battery is complex and susceptible to external influences, such that the
traditional model-driven approach cannot model it accurately. In this paper, based on the data-driven
approach, an expectation maximization algorithm is proposed to model a class of lithium battery. By
using the expectation maximization algorithm, the model parameters and actual values of test, as well as
the noise intensity can be identified simultaneously. The NASA battery data sets are employed to
demonstrate the effectiveness of the proposed algorithm. Several indices are presented to evaluate the
inferred lithium battery models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Lithium battery is a rechargeable battery with high energy
density, low temperature performance, low self-discharge rate and
long lifetime. It has been widely used in portable power products,
hybrid electric vehicles and mobile communication [1-4]. Note
that, the lithium battery failure can lead to the performance
degradation, operating error or even catastrophic failure of the
whole complex system [5]. In order to overcome battery failure,
achieve effective lithium battery energy management, make full
use of the power, extend the life of lithium battery and improve
the safety and reliability of the system, it is necessary to model the
lithium battery, analyze the characteristics, and estimate para-
meters. However, due to the time-varying and strong nonlinear
characteristics, as well as influences by random factors as driving
loads and operating environment in its application, it is difficult to
obtain a precise battery model. Recently, there has been an
increasing research interest to model lithium battery [6-9].

On the one hand, in order to optimize battery's physical para-
meters, some physical models have been greatly utilized for bat-
tery model design based on traditional model-driven approaches,
such as electrochemical model and equivalent circuit model.
Unfortunately, the speed of producing predictions as well as the
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configuration are unideal, hence, only limited analytical insight is
provided to system designers [10]. In addition, in order to describe
a new parameter estimation algorithm for the lithium battery
model, the sequential quadratic programming method is used in
[11] to estimate the model parameters in accordance with the
application bandwidth of the battery. Due to the frequency
response characteristics of the battery, standard identification
algorithms cannot perform such an identification successfully. In
[12], the authors proposed a time-scaled battery model parameter
identification method to identify the slower and faster battery
dynamics separately. However, it is worth noting that the existing
work ignored the nonlinear capacity effects, hence the lithium
battery cannot be modeled accurately. In [13], an accurate and
simple electrical battery model is proposed, where the nonlinear
capacity effects are considered to reduce the modeling error.

On the other hand, the internal chemical reaction of lithium
battery is complex and susceptible to external influences. There
exists a strong non-linear characteristic and noise. Thus, the internal
chemical reaction cannot be expressed directly, and traditional
model-driven approach cannot model accurately. Compared with the
traditional model-based modeling, data-driven approach only
requires online or offline experimental data, and can only rely on
experimental data to establish the appropriate model. For example,
in [14], a data-driven battery State of Health (SOH) estimation
approach is realized based on the Gaussian process model algorithm.
In [15], an online support vector regression algorithm is applied to
realize battery remaining useful life (RUL). An online dynamic RUL
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estimation framework is proposed to achieve the online application
and precise prediction.

Obviously, the stochastic dynamic model can be used to
describe the complexity and non-linear characteristic of lithium
battery, which consists of the first-order autoregressive stochastic
dynamic process and the noisy measurement. The rational for
choosing a stochastic dynamic model for the lithium battery is
justified from the following three aspects. First, the model should
be describe the internal relationship of battery. Second, the model
is convenient for digital computation since the time series data of
battery are actually obtained as a series of discrete-time points.
Third, the observations of the model should be regarded as noisy
due to our inability to perfectly and accurately measure the sig-
nals. As such, the modeling method should be capable of tackling
available time series with acceptable accuracy.

After specifying the model structure, we need to find a way to
jointly estimate the model parameters and the actual signal
intensities simultaneously. The expectation maximization (EM)
algorithm can be considered as an appropriate candidate because
of its capability of handing the estimation problem via time series
data. It is a general iterative method to compute maximum like-
lihood estimates of a set of parameters. The EM algorithm has
been widely applied to various areas including classification,
function approximation, clustering analysis, density estimation
and construction of hidden Markov models in the field of statistics
and machine learning [16-19]. In particular, two new EM Boolean
factor analysis algorithms were introduced to maximize the like-
lihood of a Boolean factor analysis in [20]. In [21], an annealed EM
algorithm was presented, and showed its effectiveness for
extraction of fetal electrocardiograms.

In this paper, the EM algorithm is used to model the lithium
battery for the first time. The EM algorithm is an iterative para-
meter estimation algorithm, and can identify both the model
parameters and actual signal intensities of test simultaneously.
Experimental results with the NASA battery data sets show that
the approach can be effectively applied to model the battery. The
main contribution of this paper is mainly threefold. (1) The lithium
battery model is viewed as a stochastic dynamic model so as to
describe the internal relationship of battery. (2) The EM algorithm
is applied to jointly estimate the model parameters and the actual
signal intensity. (3) The algorithm is validated in a comprehensive
way through NASA battery data sets in terms of some well-defined
criteria.

The remainder of this paper is organized as follows. In Section 2,
the lithium battery is described as a stochastic dynamic model. The
EM algorithm is introduced in Section 3 for handling the sparse
parameter identification problem and noisy data analysis. In
Section 4, our developed algorithm is applied to the NASA battery
sets. We also make the model quality evaluation in Section 5 to
verify the almost stability and robustness of the model. Some
concluding remarks are provided in Section 6.

2. Stochastic dynamic model for the lithium battery

From the electrochemical model and equivalent circuit model,
although the equation of model can represent lithium battery
interior structure, but the lithium battery is a very complex elec-
trochemical system with physical/chemical processes and some
extra side reactions, such as aging, diffusion and self-discharge
effects. As a result, the above two models cannot satisfy universal
model of lithium battery. In this section, the lithium battery should
be regarded as universal state-space model, and the model para-
meter can be obtained via the EM algorithm. Besides, the mea-
sured data from lithium batteries are often contaminated by

noises. The dynamic of lithium battery can be modeled as
Yilk) =xi(k)+vi(k) M

where y;(k) is the measured value of the ith state variable at time
k. xi(k) is the actual value of the ith state variable at time k. v;(k) is
a zero mean Gaussian white noise sequence with covariance
Vi>0,i=1,2,...,n,k=1,2,...,m, n is the number of states, and m
is the sampling time points.

Then, we model the lithium battery containing n states by the
following stochastic discrete-time dynamic system:

x(k+1) = ax(k) +w;(k) )

where a; represents the relationship between the states at time k
and the states at time k+1. wi(k) is a zero mean Gaussian white
noise sequence with covariance W; >0, wygk) and v{k) are
mutually independent. Now, denote

x(k) & [X1 (k) xa2(k) xn(k)} ! 3)

In this paper, our aim is to establish the model (1) and (2) from the
measurement data

y(k) £ [Jh (k) y2(k) Yn(k) ] ' 4

To handle such a system identification problem, we introduce the
EM algorithm to identify the model (1) and model (2). Before
introducing our algorithm, we define the vector

0L[a G ~ G Wi Wy = Wy Vi V, = Vi] (5

which consists of all parameters to be estimated in (1) and (2).

3. Em algorithm for parameter identification

In this section, the main idea of the EM algorithm was intro-
duced in [22-28]. Then we make use of the Kalman filtering and
Kalman smoothing approaches to derive the iterative computation
procedure for the proposed model (1) and (2). Each iteration is
decomposed into an Expectation step (E-step) and a Maximization
step (M-step). The E-step is using the current parameter estima-
tion and observed data to estimate the logarithm likehood of the
complete data. The M-step updates the new parameter by max-
imizing the logarithm likehood function of the estimation. Hence,
given the observations Y and the current parameter estimation,
the natural logarithm of the conditional expectation of probability
density function for the completed data was defined as:

J0.6") 2 E [LX. Y. 0)] Y (6)

where

LX,Y,0)2 - )" {glm 74 +% > Witk —ax(k—1)]"
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with the constant C being independent of 6.
The new parameter to be estimated can be obtained by

ot 2 argmax J0,0") 8)

which leads to

al*h = { > EgolxioxT (k—1)| Y]}
k=1
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