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a b s t r a c t

Clustering analysis can facilitate the extraction of implicit patterns in a dataset and elicit its natural
groupings without requiring prior classification information. Numerous researchers have focused
recently on graph-based clustering algorithms because their graph structure is useful in modeling the
local relationships among observations. These algorithms perform reasonably well in their intended
applications. However, no consensus exists about which of them best satisfies all the conditions
encountered in a variety of real situations. In this study, we propose a graph-based clustering algorithm
based on a novel density-of-graph structure. In the proposed algorithm, a density coefficient defined for
each node is used to classify dense and sparse nodes. The main structures of clusters are identified
through dense nodes and sparse nodes that are assigned to specific clusters. Experiments on various
simulation datasets and benchmark datasets were conducted to examine the properties of the proposed
algorithm and to compare its performance with that of existing spectral clustering and modularity-based
algorithms. The experimental results demonstrated that the proposed clustering algorithm performed
better than its competitors; this was especially true when the cluster structures in the data were
inherently noisy and nonlinearly distributed.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Modern industrial processes generate an unprecedented
wealth of data that overwhelms traditional analytical approaches.
Clustering analysis can facilitate the extraction of implicit patterns
from these huge datasets and thus elicit their natural groupings.
Clustering algorithms systematically partition the dataset by
minimizing within-group variation and maximizing between-
group variation [1]. Clustering analysis has been applied in var-
ious fields, such as text mining [2], image segmentation [3],
bioinformatics [4], Web mining [5], and manufacturing [6].

Numerous clustering algorithms have been developed [7]. The
most prominent of these are k-means [8], density-based spatial
clustering of applications with noise (DBSCAN; [9]), and
modularity-based clustering [10,11].

Although most of the existing algorithms perform reasonably
well within the situations for which they were designed, no con-
sensus exists about which is the best all-around performer in real-
life situations. Most existing clustering algorithms perform poorly
when the cluster structures inherent in the dataset have nonlinear
patterns and different densities [12].

To address these limitations, the technique of transforming
from a feature space to a graph space has been adapted to the
design of clustering algorithms. By expressing the data as a graph
structure, the local relationships between observations can be
effectively modeled [13]. In a graph, nodes and edges express the
observations and their relationships. In other words, graphs, by
their topological nature, are more naturally suited to expressing
certain dataset relationships and structures [13,14]. Because of
these advantages, graphing techniques have been widely applied
in various machine learning areas, such as manifold learning [15],
semi-supervised learning [16], and clustering [17–19].

A graph-based clustering algorithm discovers the intrinsic
groupings of a dataset by extracting topological information of
relative adjacency among observations [20]. A number of graph-
based clustering algorithms have been proposed to capitalize on
the benefits described above [21]. In graph-based clustering, a
subgraph can be considered as a cluster to maximize the intra-
connectivity within subgraphs [22,23]. Various objective functions
have been proposed to properly discover the clusters in a graph.
These include cut [24], ratio cut [25], normalized cut [18,26], and
conductance [27]. However, the optimization issues raised by
these objective functions are hard to solve because they are non-
deterministic polynomial time-hard (NP-Hard) problems [28].

To deal with this computational issue and solve the problem
more efficiently, a proposed spectral clustering method eases the
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optimization difficulties by adopting a spectral decomposition
technique [29]. Moreover, several variants of these spectral clus-
tering methods have been developed [30]. Among these, an
algorithm proposed by Ng et al. [26] is notable. In Ng’s algorithm,
the normalized adjacency matrix is computed from the graph
structure, and the resulting matrix is partitioned by using spectral
decomposition and k-means clustering methods. This algorithm
has been widely used because of its simplicity in implementation
and outstanding performance in many situations [31]. However,
despite its success, this algorithm has several limitations. First, the
number of clusters must be determined in advance. This require-
ment may cause problems, especially when explicit knowledge of
the data is not readily available [32]. Furthermore, spectral clus-
tering algorithms do not work well on datasets that contain the
noisy clusters common to many real situations [30,33].

In their analyses of graph clustering, many researchers in recent
years have focused on modularity-based algorithms [10,34]. Mod-
ularity measures the significance of the connection between the
nodes within a cluster. High modularity implies that clusters are
properly constructed. Modularity is known as an effective measure
for examining the adequacy of intrinsic clusters in a graph [35].
However, maximizing modularity often produces unsatisfactory
results because it may lead to inadequate partitioning of nonlinear
patterns, such as S-curves and Swiss roll shapes [36].

Chameleon [37] and Markov cluster (MCL; [38]) are also well-
known graph-based clustering algorithms. Chameleon algorithm
starts with the k-nearest neighborhood graph and partitions the
graph structure into large number of small initial clusters. The
initial clusters are then merged to preserve to maximize the inter-
nal self-similarities of clusters. Chameleon algorithm works well
when the clusters have nonlinear patterns and the clusters have
different densities [39]. However, this algorithm suffers from the
curse of dimensionality in high dimensional data and requires a
number of user-defined parameters [12]. MCL partitions the dataset
based on the stochastic process. This algorithm constructs the
transition matrix from the adjacencies between observations and
expands it until this matrix converges. The final cluster is identified
from the converged transition matrix [38]. MCL is widely used for
graph partitioning due to its effectiveness and robustness against
the noises. In addition, this algorithm does not require the number
of clusters in advance. In spite of these advantages, MCL might not
be suitable for identifying the nonlinear clusters because this
algorithm tends to partition the large clusters [40].

In the present study, we propose a novel graph-based cluster-
ing algorithm that is especially useful for grouping data exhibiting
noisy and nonlinear patterns. To achieve robustness against
background noise, the proposed algorithm differentiated between
dense and sparse nodes [23]. The proposed algorithm determines
the main structure of each cluster in the dense regions of a graph;
then the clusters are partitioned by the sparse regions in the
graph. The basic concept of the proposed algorithm derives from
the density-level set approach [23,41,42]. Two types of noise
treatment schemes — rough cluster and exact cluster identification
— can be defined in a density-level set approach [23]. In choosing
between these two noise treatment schemes, we focus on exact
cluster identification because of its robustness against noisy
observations.

The remainder of this paper is organized as follows. Section 2
introduces our proposed clustering algorithm. Section 3 presents a
simulation study to demonstrate the advantages of the proposed
algorithm over the existing algorithms. Section 4 reports the
results of experiments undertaken with simulated and real data to
examine the properties of the proposed algorithm and to compare
it with existing graph-based clustering algorithms. Section 5
contains our concluding remarks.

2. Proposed algorithm

The proposed density-based noisy graph partition (DENGP)
algorithm consists of five main steps: The first is to represent the
data as a mutual k-nearest neighbor graph. In this graph, all
observations are represented as nodes. Second, the density of each
node (called the density coefficient) is computed to determine the
dense regions in the graph structure. Having calculated the density
coefficients of all nodes, they are then classified either as core
nodes or surrounding nodes. Those classified as surrounding
nodes are temporarily excluded from the clustering procedure.
Third, the core nodes are partitioned into several initial subgroups,
and these subgroups are agglomerated to maximize the intra-
connectivity within the cluster. In other words, those clusters that
are connected with each other are hierarchically merged until no
connection between them exists. In the fourth step, the tem-
porarily excluded surrounding nodes are assigned to one of the
clusters by a weighted majority voting scheme. Finally, all nodes
are examined to see whether they have been properly assigned. If
a node has been assigned incorrectly, it is then reassigned to the
maximally connected cluster. Fig. 1 shows a graphical illustration
of the proposed algorithm.

Fig. 1 shows the overall process of the proposed DENGP algo-
rithm with an illustrative dataset containing three clusters. As
shown in Fig. 1a, the original dataset is first transformed into a
mutual k-nearest neighbor graph structure. The density coefficients
of all nodes are then computed, and each node is classified as either
a core or a surrounding node based on a given threshold value.
Section 2.2 describes the detailed process to determine the appro-
priate threshold value. After the classification, surrounding nodes
are temporarily removed from the graph. In Fig. 1b, the core and
surrounding nodes are expressed as pentagrams (five-pointed stars)
and diamonds, respectively. As shown in this figure, the clusters are
more clearly delineated after the surrounding nodes have been
eliminated. The third step groups the core nodes into several cluster
structures, as shown in Fig. 1c. This figure illustrates construction
from the core of three clusters with nodes that are represented as
circles, triangles, and squares. In the next step, the surrounding
nodes temporarily removed earlier are assigned to the appropriate
cluster, as shown in Fig. 1d. Finally, several incorrectly assigned
nodes are reassigned to the appropriate cluster labels. In Fig. 1e, the
nodes included in the dashed regions are incorrectly assigned
nodes. A more detailed explanation of each step of the proposed
algorithm is presented in the following sections.

2.1. Constructing the mutual k-nearest neighbor graph

The first step of the proposed algorithm is to represent the data
as a graph structure. As mentioned in Section 1, the cluster analysis
of nonlinear patterns makes frequent use of representing a dataset
as a neighborhood graph structure [43,44]. Several types of neigh-
borhood graph structures exist. These include the ε-nearest neigh-
bor graph, the symmetric k-nearest neighbor graph, and the mutual
k-nearest neighbor graph [45]. Of these, the mutual k-nearest
neighbor graph is sparser than other graph schemes, a feature that
leads to the minimization of noise effects [16]. This makes the
boundaries between clusters clearer [12]. Hence, in this study, we
use the mutual k-nearest neighbor graph to group the data. The
definition of the mutual k-nearest neighborhood graph is as follows:

Definition 1. : Mutual k-Nearest Neighbor Graph. A mutual k-
nearest neighbor-based graph with n nodes is constructed as fol-
lows. An edge, eij, between node i and j is defined as:

eij ¼
1 if xiAKðjÞ and xjAKðiÞ
0 otherwise

:

�
ð1Þ
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