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a b s t r a c t

In this paper, the problem of stability analysis for a class of static recurrent neural networks with interval
time-varying delay is considered. By constructing a newly augmented Lyapunov–Krasovskii functional
containing triple integral terms and utilizing the inverses of first-order and squared reciprocally convex
parameters techniques and zero equality, new and improved delay-dependent stability criteria are
proposed to guarantee the asymptotic stability of the concerned networks with the framework of linear
matrix inequalities (LMIs). Finally, some numerical examples are given to illustrate the effectiveness of
the proposed methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the past two decades, neural networks have been exten-
sively applied in many areas such as reconstruction of moving
image, signal processing, the tasks of pattern recognition, asso-
ciative memories, fixed-point computations, and so on [1,2].
However, it is well known that for the finite speed limit of infor-
mation processing and the inherent communication time of neu-
rons, time delay is inevitably encountered in the implementation
of networks. And the existence of time delay is often one of the
main sources to cause poor performance and even instability of
neural networks. As a result, numerous stability analysis criteria of
delayed neural networks have been reported. In addition, to
characterize the dynamical evolution rule of neural networks,
according to the use of the neural states, the model of neural
networks can be classified into recurrent neural networks [3]. In
the recent years, many results on stability analysis of recurrent
neural networks have been obtained in [4–20].

Most of the obtained results are always classified into the
delay-independent criteria and delay-dependent one. The delay-
independent stability criteria [26,27] can guarantee the stability of
the system irrespective of the size of time-delay. Due to unex-
pected dynamic network behaviors such as oscillation and

instability, the delay-dependent stability criteria [25,28-36] are
concerned with the size of delay and provide an upper bound of
time-delay size which assure the asymptotic stability of the sys-
tem. Therefore, it is important to analysis the stability of delayed
system in the literature.

Referring to recurrent neural networks, this network is also
extended to the stability problem with time-delay. Because the
lower bounds of time delay are not always restricted to be zero,
time delay will appear time-varying property, see Refs. [11,20] and
so on. So the interval time-varying delay h(t) appears that time-
varying property is a common situation. In addition, the constant
time delay is a special case of the interval time-varying delay. In
fact, it happens in the real world as we can see in the stock market,
the decision making of trade-off is impacted by the information at
time t and at time-varying t�hðtÞ. Recently, Zuo et al. [16] inves-
tigated the problem of delay-dependent stability for time-varying
static neural networks by considering some semipositive-definite
free matrices. In [17], the stability and dissipativity problems of
static neural networks with time-varying delay were investigated
by using the delay partitioning technique. In [18], Sun and Chen
proposed the stability criteria for a class of static neural networks
by constructing the augmented Lyapunov functional which fully
uses the information about the lower of the delay and contains
some new double integral and triple-integral terms. Li et al. [19]
developed a unified approach for stability analysis of generalized
static neural networks with time-varying delays and linear frac-
tional uncertainties by utilizing some novel transformation and
discretized scheme. In addition, Lian et al. [28] also derived the
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stability criteria for a class of switched recurrent neural networks
with time-varying delays.

Here, for the purpose of conservative reduction, many techni-
ques (such as free weighting matrix, delay decomposition, and
Jensen's integral inequalities) have been employed in terms of
linear matrix inequalities (LMIs). However, in [13–20], when
constructing the Lyapunov–Krasovskii functional, most of the
developed approaches in those do not make full use of the infor-
mation about the time-varying delay h(t) and only consider the
low bound of the delay. In addition, previous convex method also
only applies the inverses of first-order technique to tackle the
time-varying delay. There still exists some conservatism for
recurrent neural networks with interval time-varying delay to be
further improved.

With this motivation above, in this paper, the problem of sta-
bility analysis for a class of static recurrent neural networks with
interval time-varying delay is considered. The main contributions
of this paper are reflected as follows: First, we construct a newly
augmented Lyapunov–Krasovskii functional containing triple
integral terms by utilizing the inverses of first-order and squared
reciprocally convex parameter techniques and zero equality. Sec-
ond, based on the reciprocally convex method [21], we directly
handle function combinations arising from the triple integral
terms. Third, both lower and upper bounds of time delays are
taken into consideration, and the variations of the lower bound
lemma are also introduced to deal with various kinds of function
combinations. As a result, a new and improved less conservative
delay-dependent stability criteria are proposed to guarantee the
asymptotic stability of the concerned networks with the frame-
work of linear matrix inequalities (LMIs). Numerical examples are
given to illustrate the effectiveness of the proposed methods.

Notation: In this presentation, the following notations will be
used. Rn denotes the n-dimensional Euclidean vector space, and
Rm�n is the set of all m� n real matrix. n denotes the symmetric
part. For symmetric matrices X and Y, X4Y means that the matrix
X�Y is positive definite, whereas XZY means that the matrix X
�Y is nonnegative. In, 0n and 0m�n denote n� n identity matrix,
n� n and m� n zero matrices, respectively. X? denotes a basis for
the null-space of X. col fx1; x2;…; xng means ½xT1 ; xT2 ;…; xTn�T . The
subscript ’T’ represents the transpose, diag f⋯g denotes the block
diagonal matrix. For any matrix X, Sym fXg means XþXT . X½f ðtÞ�A
Rm�n means that the elements of matrix X½f ðtÞ� include the scalar
value of f(t), i.e., X½f 0� ¼ X½f ðtÞ ¼ f 0 �.

2. Preliminaries

Consider a class of static recurrent neural network with time-
varying delay described as follows:

_yðtÞ ¼ �AyðtÞþgðWyðt�hðtÞÞþμÞ ð1Þ
where yðtÞ ¼ ½y1ðtÞ; y2ðtÞ;…; ynðtÞ�T ARn denotes the neuron state vec-
tor, μ¼ ½μ1;μ2;…;μn�T is constant input vector, A¼ diagfa1; a2;…; ang
ARn�n with ai40; i¼ 1;2;…;n, is a positive diagonal matrix, gðWy
ð�ÞÞ ¼ ½g1ðW1yð�ÞÞ; g2ðW2yð�ÞÞ;…; gnðWnyð�ÞÞ�T ARn denotes the neuron
activation function vector,W ¼ ½WT

1 ;W
T
2 ;…;WT

n�T ARn�n is the delayed
interconnection weight matrix. h(t) is time-varying delay and satisfies

h1rhðtÞrh2; h12 ¼ h2�h1; ð2Þ
and

_hðtÞru; ð3Þ
where h1 and h2 are known positive scalars, and u is a constant.

In addition, it is assumed that each neuron activation function
in (1), gið�Þ, i¼ 1;2;…;n, satisfies the following condition:

Assumption 2.1. The neuron activation functions gið�Þ, i¼ 1;2;…;

n are continuous, bounded and satisfy

k�
i rgiðs1Þ�giðs2Þ

s1�s2
rkþ

i ; 8s1; s2AR; s1as2; ð4Þ

where k�
i and kþ

i are known real constants.

By using the Brouwers fixed-point theorem, it can be easily
proven that there exists one equilibrium point for (1). Assuming
that yn ¼ ½yn

1; y
n

2;…; yn
n�T is an equilibrium point of (1) and using the

transformation xð�Þ ¼ yð�Þ�yn, system (1) can be converted to the
following system:

_xðtÞ ¼ �AxðtÞþ f ðWxðt�hðtÞÞÞ ð5Þ
where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ;…; xnðtÞ�T , f ðWxð�ÞÞ ¼ ½f 1ðW1xð�ÞÞ; f 2ðW2xð�ÞÞ;
…; f nðWnxð�ÞÞ�T with f ðWxð�ÞÞ ¼ gðWðxð�ÞþynÞþμÞ�gðWynþμÞ. It is
easy to see that f ið�Þ, i¼ 1;2;…;n satisfy the following condition:

k�
i r f iðs1Þ� f iðs2Þ

s1�s2
rkþ

i ; 8s1; s2AR; s1as2; f ið0Þ ¼ 0; i¼ 1;2;…;n:

ð6Þ
From (6), if s2 ¼ 0, then we have

k�
i r f iðs1Þ

s1
rkþ

i ; 8s1a0: ð7Þ

And the conditions (6) and (7) are, respectively, equivalent to

½f iðs1Þ� f iðs2Þ�k�
i ðs1�s2Þ�½f iðs1Þ� f iðs2Þ�kþ

i ðs1�s2Þ�r0; ð8Þ

½f iðs1Þ�k�
i s1�½f iðs1Þ�kþ

i s1�r0: ð9Þ
The objective of this paper is to study delay-dependent stability

conditions for system (5), the following lemmas play an important
role in the derivation of the main results.

Lemma 2.1 (Park et al. [21]). Let f 1; f 2;…; f N : Rm⟶R have posi-
tive values in an open subset D of Rm. Then, the reciprocally convex
combination of fi over D satisfies

min
fai j ai 40;

P
i
ai ¼ 1g

X
i

1
ai
f iðtÞ ¼

X
i

f iðtÞþmax
gi;jðtÞ

X
ia j

gi;jðtÞ

subject to

gi;j : R
m⟶R; gi;jðtÞ9gi;jðtÞ;

f iðtÞ gi;jðtÞ
gi;jðtÞ f iðtÞ

" #
Z0

( )

Lemma 2.2 (Finsler's lemma [22]). Let ζARn; Φ¼ΦT ARn�n, and
BARm�n such that rankðBÞo0. Then, the following two statements
are equivalent: (a) ζTΦζo0; Bζ ¼ 0; ζa0, (b) ðB? ÞTΦB? o0,
where B? is a right orthogonal complement of B.

Lemma 2.3 (Wang et al. [23]). For the symmetric appropriately
dimensional matrices Ω40;Ξ;matrixΛ, the following two state-
ments are equivalent: (a) Ξ�ΛTΩΛo0, (b) there exists a matrix of
appropriate dimension Ψ such that

ΞþΛTΨ þΨ TΛ Ψ T

Ψ �Ω

" #
o0:

3. Main results

In this section, new stability criteria for the system ð5Þ will be
proposed by introducing a new Lyapunov functional and using a
new method to estimate the derivative of the Lyapunov functional.

Theorem 3.1. For given scalars 0oh1oh2 and u, diagonal matrices
K1 ¼ diagfk�

1 ;…; k�
n g, and K2 ¼ diagfkþ

1 ;…; kþ
n g, the system (5) is

asymptotically stable for any time-varying delay satisfying (2), (3) if
there exist positive define matrices P ¼ ½Pij�5�5, Q ¼ ½Qij�3�3,
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