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a b s t r a c t

Building a good graph to represent data structure is important in many computer vision and machine
learning tasks such as recognition and clustering. This paper proposes a novel method to learn an
undirected graph from a mixture of nonlinear manifolds via Locality-Preserving Low-Rank Representa-
tion (L2R2), which extents the original LRR model from linear subspaces to nonlinear manifolds. By
enforcing a locality-preserving sparsity constraint to the LRR model, L2R2 guarantees its linear repre-
sentation to be nonzero only in a local neighborhood of the data point, and thus preserves the intrinsic
geometric structure of the manifolds. Its numerical solution results in a constrained convex optimization
problem with linear constraints. We further apply a linearized alternating direction method to solve the
problem. We have conducted extensive experiments to benchmark its performance against six state-of-
the-art algorithms. Using nonlinear manifold clustering and semi-supervised classification on images as
examples, the proposed method significantly outperforms the existing methods, and is also robust to
moderate data noise and outliers.

& 2015 Published by Elsevier B.V.

1. Introduction

Graph-based methods have attracted a lot of attention over the
last decade in the field of computer vision and machine learning.
Various graph-based algorithms have been successfully applied in
diverse scenarios, such as image segmentation [1–3], semi-
supervised learning [4], and dimensionality reduction [5,6]. Their
core idea is to learn a discriminative graph to characterize the
relationship among the data samples. However, how to learn a
good graph to accurately capture the underlying structure from
the observed data is still a challenging problem. In this paper, we
propose a novel method to address the graph construction pro-
blem for nonlinear manifolds based on some emerging tools in
low-rank representation and sparse optimization.

Conceptually, a good graph should reveal the true intrinsic
complexity or dimensionality of the data points (say through
local linear relations), and also capture certain global structures
of the data as a whole (i.e. multiple clusters, subspaces, or

manifolds). Traditional methods, such as k-nearest neighbors and
Locally Linear Embedding (LLE) [7,8], mainly rely on pair-wise
Euclidean distances to build a graph by a family of overlapping
local patches. Since pair-wise distances only characterize the
local geometry of these patches by linearly reconstructing each
data point from its neighbors, these graphs can only capture local
structures, and are very sensitive to local data noise and errors as
well. Moreover, traditional methods only work well for a single
manifold, and often fail when data points arise from multiple
manifolds.

Most recently, in order to capture the global structure of the
data, several methods [9–13] have been proposed to construct a
sparse and block-diagonal graph with new mathematical tools
(such as sparse representation [14] and Low-Rank Representation
[12]) from high-dimensional statistics and covex optimization.
Different from traditional methods, these methods represent each
datum as a linear combination of all the remaining samples (such
as in [9,10]) or all the whole data (such as in [11–13]). Here, we call
them Representation-based methods. By solving a high-dimensional
convex optimization problem, these methods automatically select
the most informative neighbors for each datum, and
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simultaneously obtain the graph adjacency structure and graph
weights in nearly a parameter-free way. Benefitting from the new
mathematical tools, these methods are able to generate a block-
diagonal graph, and are robust to data noise. However, the block-
diagonal structures obtained by these methods are often fragile,
because they hold the hypothesis that the manifold can be
embedded linearly or almost linearly in the ambient space.
Unfortunately, in real applications, this hypothesis may not be
always true. It has been proven that many high-dimensional data
usually exhibit significant nonlinear structure, where these
representation-based methods often fail to deliver satisfactory
performance. As a result, the block-diagonal structures cannot be
enforced strictly in this case.

In fact, studies on manifold learning have shown that, to deal
with data sampled from nonlinear manifolds [15–17], one has to
exploit the local geometrical structure of manifold, or use a non-
linear mapping to “flatten” the data (such as kernel methods
[18,19]). In order to preserve the local geometrical structure
embedded in high-dimensional space, some graph regularizers are
readily imposed on the linear combination representation of the
data. For example, Zheng et al. proposed a method called Low-
Rank Representation with Local Constraint (LRRLC) [15] by incor-
porating the so-called local consistency assumption into the original
Low-Rank Representation (LRR) model, with the hope that if two
samples are close in the intrinsic geometry of the data distribu-
tion, they will have a large similarity coefficient. LRRLC introduced
a weighted sparsity term (i.e. graph regularization term) with
data-dependent weights into the original LRR model. The weights
changed with the distance between samples. However, the graph
regularization term could not guarantee that close samples would
have large similarity coefficient. It only enforced the coefficients
between faraway points to be small. Essentially, the LRRLC model
only used the relationship among points to re-weight the linear
representation.

Our goal is to preserve both the global structure and the local
structure in our constructed graph. To capture the global struc-
ture, the linear representation Z should be block diagonal, which
means that the coefficient Zij should be zero if data point xi and xj
are not in the same cluster.1 Since the local consistency
assumption only encourages the coefficients between close
samples to be nonzero, it will not necessarily lead to being block
diagonal. On the contrary, the LRRLC model often fails to accu-
rately represent the geometric structure of manifolds because of
two drawbacks. First, LRRLC directly uses affine subspaces to find
neighborhoods of points, and thus are likely to select faraway
points as neighbors. This may cause a coefficient between two
faraway points to be nonzero, even if they belong to different
manifolds or are well separated by other points on the same
manifold. Second, LRRLC uses the non-negativity constraint to
define neighborhood for every point. When a point is on a
boundary, this constraint may choose points from other mani-
fold/subspace as its neighbors, or the boundary point will be
isolated. These two drawbacks often violate the block diag-
onalization of its solution in the LRRLC model. As a result, the
LRRLC model often obtains a dense graph that negatively affects
its performance.

1.1. Contributions

Inspired by the above insights, we propose to extend the LRR
model to construct an informative graph called Locality-Preserving
Low-Rank Representation Graph (L2R2-graph). Specially, given a set

of data points, we represent each data point as a linear combina-
tion of all the other points. For each point, we determine its
neighbors according to the pair-wise distance. By restricting the
coefficient Zij for non-neighbors to be zero and imposing the affine
constraint, we approximate the nonlinear manifold by a collection
of affine subspaces. Since we require that data vector on the same
affine subspace can be clustered in the same cluster, we require
that the coefficient vectors of all data points collectively form a
low-rank matrix. By imposing the low-rank constraint, the
L2R2-graph can better capture the global cluster or subspace
structures of the whole data, and is more robust to noise and
outliers.

It is worthwhile to highlight several advantages of L2R2-graph
over the existing works:

1. Compared with traditional methods, since L2R2-graph imposes
the low-rank constraint, it can better capture the global struc-
ture. Moreover, as shown in later experiments, though
L2R2-graph uses pair-wise distance to define the graph adjacent
structure, it is insensitive to the global parameters, while
traditional methods are more sensitive to the global parameters.

2. Compared with other representation-based methods based on
the hypothesis of linear subspaces, L2R2-graph explicitly con-
siders the local structure of manifolds, and preserve it during
graph construction. Such local structure preservation makes the
learned L2R2-graph more sparse than these representation-
based methods.

3. Compared with LRRLC-graph [15], L2R2-graph can better pre-
serve the geometric structure of manifolds. In LRRLC-graph, the
local structure is used to re-weight the linear combination
coefficients, which compromises the block diagonality assump-
tion of the representation. While in L2R2-graph, the local
structure is used to define the neighborhood of each point.
Since restricting the coefficient Zij for non-neighbors to be zero
may not affect the block diagonality of the representation Z, the
resulting Z could still be block diagonal in ideal cases.

We conduct extensive experiments on simulation data and
public databases for two typical tasks, namely nonlinear manifolds
clustering and semi-supervised classification. The experimental
results clearly demonstrate that the L2R2-graph can significantly
improve the learning performance, and is more informative and
discriminative than other graphs constructed by conventional
methods.

The remainder of this paper is organized as follows. In Section 2,
we give the details of how to construct a locality-preserving low-
rank graph. Our experiments and analysis are presented in Section 3.
Finally, Section 4 concludes our paper.

2. Graph building via locality-preserving low-rank
representation

2.1. Low-rank representation: an overview

Low-Rank Representation (LRR) was proposed to segment data
drawn from a union of multiple linear (or affine) subspaces. Given
a set of sufficiently dense data vectors X ¼ ½x1; x2;…; xn�ARd�n

(each column is a sample) drawn from a union of k subspaces, LRR
seeks the lowest-rank representation that represent all the vectors
as the linear combination of the data themselves, and solves the
following convex optimization problem:

min
Z;E

‖Z‖nþλ‖E‖2;1;

s:t: X ¼ XZþE; ð1Þ
1 Note that it is a misconception for Z to be block diagonal that Zij should be

nonzero if xi and xj are in the same cluster.
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