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a b s t r a c t

Excessive synchronization of neurons in the basal ganglia of the brain is one of the hallmarks for Par-
kinson's disease (PD). It has been proven that the high-frequency deep brain stimulation (DBS) was an
effective treatment for PD patients, and it could alleviate the symptoms of PD by mitigating the
pathological synchronous oscillations of neurons. To reduce risks of excessive high-frequency stimulus
and improve the DBS treatment, researchers have paid much attention to the optimization strategies of
DBS based on neuronal network models. However, the influence of neuronal network models on the
control performance has been neglected which significantly affected this optimization. This paper
investigated the effects of neuronal network models on the optimal desynchronizing control of syn-
chronized neurons, which was done by applying the discrete time dynamic programming method to
reduced phase models for neurons. Numerical simulations show that the coupling types and strengths as
well as connection topologies of neuronal networks influence the desynchronizing results greatly. Such
as, the neuronal networks with chemical synaptic couplings are more easily to be desynchronized than
those with electrotonic couplings, and the networks containing symmetry are very difficult to be
desynchronized. This research can contribute to the development and application of the optimal DBS
control strategies.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to the importance of synchronous firing activities between
distant brain regions, and the key role of information processing in
brain, synchronization phenomena of neural networks has
attracted extensively research interest [1,2]. However, pathologi-
cal, excessive synchronization of neural networks may impair
brain function and is a hallmark of several neurological disorders,
such as PD, essential tremor and epilepsy et al. [3]. In PD, for
example, excessive synchronous oscillations in β-band frequencies
(8–35 Hz) are closely associated with motor symptoms [4,5].
Research shows that reduction of synchronized oscillations by
high-frequency DBS is positively correlated with amelioration of
motor symptoms [6,7]. Nowadays, DBS has been the standard
therapy for medically refractory PD patients. However, the tradi-
tional DBS which is in an open-loop fashion could cause excess
stimulation and then bring some side effects and risks [8], thus an
optimal (feedback-based) approach is attractive from a clinical
perspective to minimize side effects and risks by optimizing the
timing and energy of the input stimulation.

Motivated by development of improving the DBS treatment,
the optimal control has been appropriately applied to neural sys-
tems to regulate the spiking timing, frequency and phase of neu-
rons [9–12]. Most previous research devoted to look for the proper
control strategies to achieve the effective synchronization or
desynchronizing control for neuronal networks, such as the non-
linear delayed feedback control presented by Tass et al. [13,14],
and the pinning-impulsive control as well as the matrix measure
strategies presented by Cao et al. [15–18]. But in fact, the neuronal
systems are very complicated, and there are many other factors,
such as size and structure of neuronal networks, types and
strengths of the couplings between neurons and so on, which
might have their influence on the control performance for syn-
chronizing or desynchronizing neurons. Recently, Schiff have
presented that the coupling in a network could have a profound
impact on its control [19]. Thus the coupling and network struc-
tures present tremendous challenges to our ability to formulate
effective control strategies. So figuring out how the desynchro-
nizing control performance can be affected by neuronal network
models, especially by the couplings between neurons, could help
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to formulate the more appropriate and preferable control strate-
gies to regulate the dynamic of neural systems.

Brain networks are extremely complicated but can be char-
acterized by highly overrepresented small motifs, and the char-
acteristics of these motifs can provide an implication for the
functions of brain. However, even the simplest motifs with only
three neurons can have many control variables providing that each
neuron is represented by the state-space equations. As we all
know that, for periodically spiking neurons, the dynamic of the full
state-space model can be described by a limit cycle, and can be
characterized by the phase models through phase coordinate
transformation together with formal averaging [20,21]. Since then,
phase models have been extensively and successfully applied to
investigate synchronization phenomena [22], especially the syn-
chronization emerging in networks of interacting oscillators as
well as on the response of collections of oscillators to external
stimuli [23–25]. And they have also been used to design control
strategies for neural systems [26–30], which indicated that the
reduced phase models were practical to achieve control objective.

Hence, to explore the effects of couplings and connection
structures between neurons on the desynchronizing control per-
formance, we design the optimal desynchronizing control on
reduced phase network models. We organize our paper as follows:
first, the discrete time dynamic programming method is intro-
duced, and then the phase network models as well as the discrete
dynamic programming framework are established, at last, the
desynchronizing results and discussions are presented.

2. Discrete dynamic programming

The main objective in an optimal control is to find out how a
system can be controlled in such a way that its behavior satisfies
certain requirements. A very efficient method for solving optimal
control problems for discrete-time systems is the recursive
dynamic programming technique, introduced by Richard Bellman
[31].

Considering a deterministic system in which the state vector at
the instant k is denoted as xk, and k satisfies 1rkrK , then if there
exists a control input uk which is applied at the instant k causing
the transition of the system from xk to xkþ1, then the evolution of
the system can be denoted as:

xkþ1 ¼ f kðxk;ukÞ; xkAχ;ukAU ð1Þ
where f k is the state transition function, χ is the state space and U
is the control space. Obviously, the system can be carried from an
initial state x1 to the final state xKþ1 with a sequence of controls
u1; :::;uK which is named as a policy.

According to the definition of dynamic programming, if the
control uk corresponds to the transition from xk to xkþ1, then an
elementary cost gkðxk;ukÞ will be assigned, and then the total costs
from x1 to xKþ1 can be denoted as:

J ¼
XK
k ¼ 1

gkðxk;ukÞþGðxKþ1Þ ð2Þ

where GðxKþ1Þ denotes the final time cost, then the optimal con-
trol policy is to get the minimal or maximal J. In dynamic pro-
gramming framework, we can use the value function EmðxmÞ for
state xmð1rmrKÞ to describe the cost-to-go from it:

EmðxmÞ ¼
XK
k ¼ m

gkðxk;ukÞþGðxKþ1Þ ð3Þ

where J ¼ E1ðx1Þ. If E�mðxmÞ denotes the future costs under the
optimal control policy starting from state xm, then according to the
principle of optimality: whatever the initial state, if the first

control decision is contained in an optimal policy, then the
remaining control decisions must constitute an optimal policy for
the problem with initial state resulting from the first control
decision [32], thus we have:

E�mðxmÞ ¼ min
uk AU;8kZm

XK
k ¼ m

gkðxk;ukÞþGðxKþ1Þ
 !

¼ min
uk AU

gmðxm;umÞþE�mþ1ðf mðxm;umÞÞ
� �

: ð4Þ

here we address the minimal cost as the optimal cost, and Eq. (4)
is the base to compute the cost-to-go for a system throughout the
time and state domains recursively. After initializing EKþ1ðxÞ, one
can first perform a backward iteration to compute E1ðxÞ for all
states in the state space. Then, given an initial condition x1, a
forward iteration loop will yield the optimal control and state
trajectories:

u�
k ¼ arg min

uk AU
ðgkðxk;ukÞþEkþ1

�ðf kðx�k;ukÞÞÞ; x�kþ1 ¼ f kðx�k;u�
kÞ; x�1 ¼ x1:

ð5Þ

3. Phase network models

Hodgkin–Huxley (HH) model, presented in 1952, was derived
to model the loligo squid's giant axon [33]. It was widely used in
modeling the dynamic of neurons, and can be denoted as follows:

_V ¼ 1
C
ð�gNahðV�VNaÞm3�gK ðV�VK Þn4�gLðV�VLÞþ IbÞ;

_m¼ amðVÞð1�mÞ�bmðVÞm;

_h¼ ahðV Þð1�hÞ�bhðVÞh;
_n¼ anðVÞð1�nÞ�bnðVÞn ð6Þ
where

amðVÞ ¼ 0:1ðVþ40Þ=ð1�expð�ðVþ40Þ=10ÞÞ;
bmðVÞ ¼ 4expð�ðVþ65Þ=18Þ;
ahðV Þ ¼ 0:07 expð�ðVþ65Þ=20Þ;
bhðVÞ ¼ 1=ð1þexpð�ðVþ35Þ=10ÞÞ;
anðVÞ ¼ 0:01ðVþ55Þ=ð1�expð�ðVþ55Þ=10ÞÞ;
bnðVÞ ¼ 0:125 expð�ðVþ65Þ=80Þ
in which V is the voltage across the neuron membrane, m;h;n are
the vectors of gating variables which correspond to the states of
the membrane’s ion channels, C is the constant membrane capa-
citance and Ib is the baseline current which can be viewed as a
bifurcation parameter of the model. The parameters are given
as C¼ 1 mF cm�2 , ḡNa¼120 mS cm�2, ḡK¼36 mS cm�2, ḡL¼
0.3 mS cm�2, VNa¼�50 mV, VK¼�77 mV, VL¼�5.4 mV. Here we
choose Ib¼10 mA cm�2 which corresponds to the periodically
spiking state of HH neuron with period T ¼ 14:63 ms. The time
series and limit cycle of the HH model are shown as Fig. 1.

If we define the state vector X ¼ ½V ;m;h;n�T , then the Eq.(6) can
be denoted as:

dX
dt

¼ FðXÞ: ð7Þ

thus the N weakly coupled neurons can be in the form:

dXi

dt
¼ FðXiÞþ

XN
j ¼ 1

gijpðXi;XjÞ: ð8Þ

gij is the weak coupling strength between neurons, and pðXi;XjÞ
indicates the coupling term between neurons. The coupling term
for electronically coupled neurons can take the form:

pðXi;XjÞ ¼ Vj�Vi: ð9Þ
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