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a b s t r a c t

As a single-hidden-layer feedforward neural network, an extreme learning machine (ELM) randomizes
the weights between the input layer and the hidden layer as well as the bias of hidden neurons, and
analytically determines the weights between the hidden layer and the output layer using the least-
squares method. This paper proposes a two-hidden-layer ELM (denoted TELM) by introducing a novel
method for obtaining the parameters of the second hidden layer (connection weights between the first
and second hidden layer and the bias of the second hidden layer), hence bringing the actual hidden layer
output closer to the expected hidden layer output in the two-hidden-layer feedforward network.
Simultaneously, the TELM method inherits the randomness of the ELM technique for the first hidden
layer (connection weights between the input weights and the first hidden layer and the bias of the first
hidden layer). Experiments on several regression problems and some popular classification datasets
demonstrate that the proposed TELM can consistently outperform the original ELM, as well as some
existing multilayer ELM variants, in terms of average accuracy and the number of hidden neurons.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Single-hidden-layer feedforward neural networks (SLFNs), one
of the most popular neural network models [1,2], have a simple
structure consisting of one input layer, one hidden layer, and one
output layer. A wide range of applications have been used to
demonstrate the efficacy of SLFNs [3,4]. However, these techniques
suffer from a time-expensive training process that usually adopts
gradient-based error back-propagation algorithms, and conse-
quently is prone to getting stuck in local minima. To address this
issue, in 2004 Huang et al. [3] proposed an extreme learning
machine (ELM) technique aiming at reducing the computational
costs incurred by the error back-propagation procedure during the
training process. A distinguishing feature of ELMs is that both the
connection weights from the input layer to the hidden layer and
the hidden neurons' biases are randomly generated, instead of
being iteratively learned as in conventional SLFNs. Moreover, the
connection weights from the hidden layer to the output layer are
analytically determined using the time-efficient least-squares
method (LS) [5]. As a result, an ELM features remarkably fast

training speed and outstanding generalization performance. The
ELM approach has demonstrated its advantages in various fields of
applications, including image recognition [6–10], power-load
forecasting [11,12], wind speed forecasting [13], and protein
structure prediction [14], among others. However, because of the
randomweights from the input layer to the hidden layer, as well as
the random biases of the hidden neurons, the average accuracy of
ELM variants is generally low, which calls for further investigation
of better hidden-layer parameter calculation approaches.

Many ELM variants have been developed to improve specific
aspects of the performance of the original algorithm. Examples
include voting-based extreme learning machines (V-ELM) [15],
regularized extreme learning machines (RELM) [16,17], evolu-
tionary extreme learning machines (E-ELM) [18], online sequential
extreme learning machines (OS-ELM) [19], fully complex extreme
learning machines (Fully complex ELM) [4,20], sparse extreme
learning machines (Sparse ELM) [21], kernel-based extreme
learning machines [22], and pruned-extreme learning machines
(P-ELM) [23], among others. However, the problem of how to
achieve more satisfactory accuracy remains a challenge to
overcome.

To achieve desirable accuracy improvements, we propose a
two-hidden-layer extreme learning machine (TELM) algorithm,
which adds a hidden layer to the single-hidden-layer ELM archi-
tecture, and utilizes a novel method to calculate the parameters
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related to the second hidden layer (namely, connection weights
between the first and second hidden layer and the bias of the
second hidden layer). Based on previous research, two-hidden-
layer feedforward neural networks (TLFNs) [24] typically require
fewer hidden neurons than SLFNs to achieve a desired perfor-
mance level. This is an initial basis for considering the two-
hidden-layer structure proposed. The foundational ideas for the
TELM algorithm are simpler to present by comparing and con-
trasting its features with other multilayer ELM algorithms.

First consider the hierarchical extreme learning machine
(HELM) approach presented in [25], which is based on a hier-
archical feedforward neural network (HFNN) structure consisting
of two parts, where each part is comprised of one input layer, one
hidden layer, and one output. It is therefore possible to regard the
output of the first part as an input neuron in the second part.
Unlike HELM, the proposed TELM contains only one output layer,
and is specifically designed for training the parameters of the
hidden layers. Furthermore, HELM is tailored to solving real-time
or on-line prediction problems that involve a time-sequence
dataset (such as predicting the water quality in a wastewater
treatment processes, for example), whereas TELM as no such
restriction on the type of training dataset.

Next, consider the multilayer extreme learning machine (ML-
ELM) [26] and the alternative H-ELM advanced in [27]. Both
techniques involve ELM-based auto-encoder schemes as their
building blocks. In fact, this H-ELM method is an improvement
over ML-ELM, as it features a sparse ELM auto-encoder for
improved performance. Both schemes focus mainly on solving
classification problems, as they are involved in feature extraction.
In their mode of operation, previous hidden layers specialize on
processing for feature extraction, whereas the last hidden layers
are mostly intended for least-squares operations. The focus of the
proposed TELM is different, as it seeks to obtain improved per-
formance using a reduced number of hidden neurons. However,
the TELM can also incorporate ELM-based auto-encoder techni-
ques, hence making it a suitable alternative for seeking improved
performance in feature extraction problems under scenarios that
call for a reduced number of neurons.

The experimental results presented in this paper for several
regression and classification problems demonstrate the superiority
of TELM over the original ELM and also over other multilayer ELM
variants in terms of average accuracy. Our experiments also
investigate the different effect on regression and classification
problems observed when using initial orthogonalization proce-
dures applied to the parameters of the first hidden-layer (that is,
connection weights between the input weights and the first hid-
den layer and the bias of the first hidden layer).

The rest of this paper is organized as follows: Section 2 pre-
sents a brief review of the original ELM, Section 3 describes the
proposed TELM technique, Section 4 reports and analyzes
experimental results, and finally, Section 5 draws key conclusions
and also discusses future research plans.

2. Extreme learning machine

The ELM approach originally proposed by Huang et al. [3] aims at
avoiding a time-consuming iterative training procedure and simul-
taneously improving the generalization performance. The idea is
inspired by the biological thought that the human brain is a
sophisticated system that can handle diverse tasks, day and night,
without human intervention. Based on this reasoning, some
researchers strongly support the idea that there must be some parts
of the brain where the neuron configurations do not depend on the
external environment [3,24,28–30]. The ELM algorithm takes
advantage of this biological argument, and employs tuning-free

neurons in the hidden layer to resolve the adverse issues encoun-
tered by the back-propagation [31] and Levenberg–Marquardt
algorithms [32].

Consider N arbitrary distinct samples xi ; tið Þ i¼ 1; 2; … ;Nð Þ,
i.e., there is an input feature X¼ x1 ; x2; …; xN½ �T and a desired
matrix T¼ t1 ; t2;…; tN½ �T comprised of labeled samples, where xi
¼ xi1; xi2;…; xin½ �TAℝn and ti ¼ ti1; ti2;…; tim½ �TAℝm, where the
superscript “T” denotes the matrix/vector transposition. Let L
denote the number of hidden neurons with activation function
g xð Þ. The ELM method selects in a random way the input-weight
matrix W¼ W1;W2; :::;W j

� �T
AℝL�n that links the input layer to

the hidden layer, and the bias vector B ¼ b1;b2;…;bL
� �T

AℝL�N of
the hidden-layer neurons. Furthermore, W and B are determined
simultaneously, and they remain fixed during the training phase.
This procedure allows transforming the original nonlinear neural-
network system to a system described by the linear expression

Hβ¼ T ð1Þ
where β¼ β1; β2 ;…; βL

� �T
AℝL�m is the connection-weight

matrix between the hidden layer and the output layer, with vector

components βj ¼ βj1; βj2; …; βjm

h iT
j¼ 1;2;…; Lð Þ that denote

the connectionweights between the jth hidden neuron andm output
neurons, H¼ g W XþBð ÞAℝN�L is the hidden layer output matrix
whose scalar entries hij ¼ g W jxiþbj

� �
i¼ 1; 2; …;ð N; j¼ 1; 2; …;

LÞ are interpreted as the output of the jth hidden neuronwith respect
to xi, W j ¼ Wj1;Wj2;…;Wjn

� �T is the vector of connection weights
between n input neurons and the jth hidden neuron, and where bj is
the bias of the jth hidden neuron. Finally, the matrix-vector product
W jxi is interpreted as the inner product between matrix W j and
vector xi.

The only parameter to be calculated in the ELM is the output-
weights matrix β. Using the least-squares method it follows that

β¼H†T ð2Þ
where H† is the Moore–Penrose (MP) generalized inverse of matrix
H, which can be calculated using the orthogonal projection method.

That is to say, if HTH is nonsingular, then H† ¼ HTH
� ��1

HT; other-

wise H† ¼HT HHT
� ��1

when HHT is nonsingular. A benefit of using
the MP method of solution is that the above formula yields the
solution vector β of the least two-norm when HHT is nonsingular, a
valuable advantage when recognizing that Bartlett [33] observes that
smaller weights lead to improved generalization performance.

The implementation of the original ELM proceeds according to
the following steps, given N training samples xi ; tið Þ i¼ 1; 2;… ;ð
NÞ and L hidden neurons with activation function g xð Þ:

(i) Randomly assign the connectionweights between the input layer
and the hidden layer W and the bias of the hidden layer B.

(ii) Calculate the hidden layer output matrix H¼ g W XþBð Þ.
(iii) Obtain weights between the hidden layer and the output layer

using the least-square method β¼H†T.

3. Two-hidden-layer extreme learning machine

In 1997 Tamura and Tateishi [34] demonstrated that two-
hidden-layer feedforward networks (TLFNs) are superior to
SLFNs in terms of the ability to use fewer hidden neurons to
achieve the desired performance. They claimed that a TLFN with
only N=2þ3

� �
hidden neurons can learn from N training samples

to achieve any negligible training error. Huang [24] further
demonstrates that by using 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ3ð ÞN

p
hidden neurons a TLFN

can learn from N training samples to achieve an arbitrarily small
training error. Such advantage of TLFNs motivates us to translate
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