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a b s t r a c t

Discriminant analysis is an important and well-studied algorithm in pattern recognition area, and many
linear discriminant analysis methods have been proposed over the last few decades. However, in the
previous works, the between-scatter matrix is not updated when seeking the discriminant vectors,
which causes redundancy for the well separated pairs. In this paper, a between-scatter matrix updating
scheme is proposed based on the separable status of the obtained vectors. In our scheme, separable
status determination of obtained vectors is decisive. Here, we notice that appropriate separation of a
multi-dimensional feature (with homoscedastic Gaussian distribution) may help to find better dis-
criminant vectors, and the separability of a multi-dimensional feature can be deduced from the separ-
ability of its elements. To make the discriminant vectors statistically uncorrelated, the algorithm is
applied to the St-orthogonal space of the obtained vectors in an iterative way. We also extend our method
to more general cases, like heteroscedastic distributions, by an appropriate kernel function. Experimental
results on multiple databases demonstrate the effectiveness of the proposed method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Big data is a hot term describing the availability and the rapid
growth of data in recent years. Big data combined with high-
powered analytics can lead to more accurate decision making.
However, using big data techniques in a real-world application is
not that straightforward. To this end, three challenging problems
have to be addressed, which are data acquisition, data processing,
and data storage. One of the solutions is to reduce the data volume
using representative data samples. Therefore, dimension reduction
becomes an essential step in many big data applications.

Many solutions have been proposed for reducing the data
dimension, such as Principal Component Analysis (PCA) [1], Linear
Discriminant Analysis (LDA) [2], Local Discriminant Embedding
(LDE) [3]. Among these methods, LDA is one of the most promi-
nent methods due to its simplicity and better performance. LDA is
first proposed by Fisher for a two-class problem, and is extended
to solve a multi-class problem by Rao [4] later on. The basic idea of
LDA is to find the optimal projecting directions that minimize the
within class scatter and maximize the between class scatter
simultaneously. LDA has been successfully deployed in many

applications including image recognition [5,6], data analysis [7,8],
visual recognition [9,10] and so on. However, there are at least
three remaining problems in LDA and its variations.

The first one is a non-optimal problem for the multi-class case if
the final dimensionality l is strictly smaller than the class number C
minus one. This is due to the fact that LDA tends to merge the
classes that locate closely. To solve this problem, many algorithms
have been proposed in the last decade. Loog et al. [11] propose a
weighting function which is the approximation of a pairwise Bayes
function. It assigns a relatively large value to the pairs that locate
nearly based on Bayes rules. Bian and Tao [12] develop a method
that aims to maximize the minimum pairwise distance. The dis-
tance between the classes that may potentially be merged is max-
imized. Recently, we propose a subset method [13], which divides
the whole set into several subsets such that the linear discriminant
methods can be applied on each subset individually. Our method
significantly improves the current linear feature extraction meth-
ods, especially in the low-dimensional representations.

The second one is the singularity problem for the within-class
scatter matrix in case only a Small Sample Size (SSS) training set is
available. The singularity makes the inversion computation of
within-class scatter matrix impossible. A simple solution to deal
with this problem is called regularized method [14,15]. It adds a
small positive number to the diagonal elements of the within-class
scatter matrix so that the inversion of the matrix can be guaran-
teed. Methods based on PCA family are also developed to solve the
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problem [16]. In these methods, PCA is first performed to remove
the null space of the within-class scatter matrix, and then LDA is
used in the lower dimensional PCA subspace. Moreover, another
branch of methods is based on a pseudo-inversion [17] scheme, in
which the pseudo-inversion of within scatter matrix makes LDA
applicable.

The third one is to find a suitable constraint that formulizes the
relation between discrimination vectors. Generally speaking, there
are two typical LDA algorithms: one is Foley–Sammon linear dis-
criminant analysis (FSLDA) [18,19], and the other one is the
uncorrelated linear discriminant analysis (ULDA) [20,21]. They
both aim to find vectors φ1;φ2;…;φn that maximize the Fisher
criterion iteratively based on different constraints. To do so, dif-
ferent matrix decomposition methods are proposed. Furthermore,
it is proven that ULDA always outperforms FSLDA, thanks to its
uncorrelated property [22]. Jin et al. [23] also show that ULDA is
equivalent to LDA if the eigenvalues of S�1

w Sb are not the same.
Here, the uncorrelated constraint plays an important role, and it is
successfully applied to other discriminant methods [24,25].

A lot of efforts have been devoted to these three areas and great
progresses have been made during last several decades. However,
to our best knowledge, the existing works do not take the separ-
ability of the feature vectors into consideration during the recur-
sive discriminant analysis procedure. In this paper, our idea is to
focus the discriminant analysis on the classes that are not well
separated. It is not even necessary to apply the discriminant
analysis for the classes that can already be separated from the
previous loops and will not be merged in higher dimensional
feature space. This is different from LDA that maximizes the dis-
tance of all classes for each projecting vector, which causes
redundancy. Implementing our idea requires a scheme that is able
to accurately and quickly determine the separable status of feature
vectors. Here, we build our scheme upon an observation that the
multi-dimensional feature with homoscedastic Gaussian distribu-
tion must be separable if any of its elements (or variables in fea-
ture selection methods) is separable. On the basis of this, an
improvement for LDA is proposed then, in which the between-
scatter matrix is updated during the procedure. To make the dis-
crimination vectors statistically uncorrelated, we iteratively apply
our algorithm to the St-orthogonal space of the obtained vectors.
The method is also extended to more general cases, like hetero-
scedastic distributions by kernel mapping function.

The rest of the paper is arranged as following: Section 2 dis-
cusses the relation of discriminant capability between the element
feature and the multi-dimensional feature vector. We then review
LDA and the constraint of the projecting vectors in Section3.
Afterwards the improving LDA method is presented in Section 4.
Experiments are shown in Section 5, and finally we conclude the
proposed method in Section 6.

2. Relation of discriminant capability between multi-
dimensional feature and its elements

A simple example is presented in Fig. 1, where the elements are
separable in the 1D space of axis X and completely overlap in the 1D
space of axis Y. Moreover, for the feature vector in the 2D plane, it is
well separated. In this section, we provide the theoretical analysis
for the relation between multi-dimensional feature discriminant
capability and the discriminant capability of its elements. The
intention is to investigate whether the characteristics of the low
dimensional elements can be employed to approximate the char-
acteristics of the entire high dimensional feature vector or not.

For two classes of homoscedastic Gaussian data G1ðμ1;ΣÞ and
G2ðμ2;ΣÞ, the decision boundary under Bayes’ rule is ðμ1�
μ2ÞtΣ�1ðXt

b�ðμ1þμ2Þ=2Þ. Thus, 8xbAXb; pG1
ðxbÞ ¼ pG2

ðxbÞ. Bayes’

error under the assumption is PðerrorÞ ¼ R
minðG1P1;G2P2Þdx,

where P1 and P2 are the priors of the two classes, respectively. For
PðerrorÞrðP1V1þP2V2Þsup pðxbÞ, V1 and V2 are the volumes of
class1 and class2 determined by minðG1P1;G2P2Þ, respectively. If
the sup pðxbÞrε, then Bayes’ error PðerrorÞrτ. Thus, a small ε

must lead to a very small τ. For this case, the two classes are
deemed to be separable. In a word, we consider the two classes
that are separable if the upper probability boundary in the deci-
sion plane is very small. With the above definition, we have the
following theorem:

Theorem 1. For two whiten Gaussian data with equal prior, the
feature must be separable if any of its element is separable.

Proof. For the Gaussian data G1ðμ1;ΣÞ, sup pG1
ðxbÞ ¼ supð1=

ð2πÞd=2 jΣ j �1Þe�ðxb �μ1ÞtΣ � 1ðxb �μ1Þ=2r ε⟺inf dG1
m ðxbÞ ¼ inf ðxb�

μ1ÞtΣ�1ðxb�μ1Þ=2Zd. To find the minimum point of dG1
m ðxbÞ, the

following equation holds

inf dG1
m ðxbÞ ¼

minimize ðx�μ1ÞtΣ�1ðx�μ1Þ
subject to ðμ1�μ2ÞtΣ�1ðx�μ1 þμ2

2 Þ ¼ 0

(
ð1Þ

The gradient of Eq. (1) is

2Σ�1ðx�μ1Þ�2
ðx�μ1ÞtΣ�1Σ�1ðμ1�μ2Þt

‖Σ�1ðμ1�μ2Þt‖22
� Σ�1ðμ1�μ2Þ

With x¼ ðμ1þμ2Þ=2, the above equation reaches zero, which
means x¼ ðμ1þμ2Þ=2 is the minimum point of Eq. (1). Thus with
the whiten assumption, we have

dG1
m

μ1þμ2
2

� �
¼
X
i

∣μ
i
1 �μi2
2 ∣2

2

where μi1 and μi2 are the ith element of μ1 and μ2 respectively. If an
element feature ð∣μi1�μi2=2∣

2Þ=2Zd, then dG1
m ððμ1þμ2Þ=2ÞZd. This

helps us to draw a conclusion: for the binary whiten Gaussian data
with equal prior, if any of its elements is separable, the feature
must be separable.□

Our main result given above provides an insight into the rela-
tion between the feature and its element in a classification. The
obtained relation is based on homoscedastic Gaussian distribution
with equal prior for two-class situation, and Hamsici and Martinez
[26] prove that LDA achieves Bayes optimal under such con-
straints. This conclusion could be used to improve the perfor-
mance of LDA, which maximizes the distances of all the pair of
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Fig. 1. An example illustrates the discriminant ability between feature and its
elements.
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