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Dimensionality reduction plays a critical role in machine learning and computer vision for past decades.
In this paper, we propose a discriminative dimensionality reduction method based on generalized eigen-
decomposition. Firstly, we define the discriminative framework between pairwise classes inspired by the
signal to noise ratio. Then the metric is given for intra-class compactness and inter-class separation.
Finally, the framework for one against one class can be easily extended to one against all classes.
Compared with traditional supervised dimensionality reduction methods, the proposed method can
catch discriminative directions for pairwise classes rather than for all classes. Furthermore, it also can
deal with non-Gaussian distributed data. The experimental results show that the proposed model can
achieve high precisions in classification tasks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In machine learning and pattern recognition, dimensionality
reduction is a standard tool in dealing with high-dimensional data
sets, which can efficiently avoid the problem of “curse of dimen-
sionality”. Dimensionality reduction is generally used as the pre-
processing method for high-dimensional data tasks, such as bio-
metric recognition, image retrieval and disaster prediction. The
purpose of dimensionality reduction techniques is to discover a
new low-dimensional space, where the analysis of intrinsic
structure for various applications would be more efficient.

Most of the conventional dimensionality reduction methods are
established on Gaussian distribution assumption, such as principal
component analysis (PCA) [1,2] and linear discriminant analysis
(LDA) [1-3], which may lose the local structure when encountering
non-Gaussian distributed data. Non-linear manifold learning meth-
ods [4-7], such as Laplacian eigenmaps (LE) [8,9], locally linear
embedding (LLE) [10] and ISOMAP [11], can deal with non-Gaussian
distributed data by preserving the local geometry of the nearest
neighbors. However, the local neighborhood relationships are
defined only on the training samples, and it is unclear how to
evaluate the maps of new testing samples. Locality preserving pro-
jections (LPP) [12] is the linear extension of LE and can locate a new
sample in the low-dimensional space easily with a linear transfor-
mation matrix. The same as other manifold learning methods, it
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ignores the discriminative information of samples with different
labels. Discriminative locality alignment (DLA) [13] tries to minimize
the distances between nearest neighbors from the same class and
simultaneously maximize the distances between nearest neighbors
from different classes. DLA can capture the intra-class non-Gaussian
structure and inter-class discriminative information. The directions
obtained by DLA complex discriminative property of all classes, but
for two given classes, there may not exist the most discriminative
one among all directions. Therefore, it is difficult to intuitively
explain the directions in DLA. On the other hand, this kind of non-
Gaussian distribution dimensionality reduction techniques tends to
find the linear sub-space of the high-dimensional data, and it may
lose effectiveness when facing with the nonlinear structure data.

In order to overcome the aforementioned drawbacks, we pro-
pose a generalized dimensionality reduction method named dis-
criminative generalized eigen-decomposition (DGE). DGE is
inspired by generalized eigenvectors for multiclass (GEM) [14]
which deal with the data in a framework of signal to noise ratio by
solving the generalized eigen-decomposition problem. GEM is still
a feature extraction method based on Gaussian distribution
assumption. To discover the local structure hidden in non-Gaus-
sian distributed data, DGE defines local signal and noise around
each training sample, and combines them in a “one-against-one”
way to construct signal to noise ratio functions. DGE can extract
discriminative features between pairwise classes in an intuitive
and implementable way. The contributions of DGE can be sum-
marized as follows,
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Fig. 1. Flowchart of DGE.
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Fig. 2. Parameter settings for classification with HDGE on MISNT dataset. (a) and (b) are the classification precisions of the first layer of HDGE under different parameter
settings. (c) and (d) are the classification precisions of the second layer of HDGE under different parameter settings.

. DGE can generally deal with complex distribution data, including
Gaussian distribution and non-Gaussian distribution.

. DGE can extract the more discriminative directions for pairwise
classes rather than complex the discriminative information of
all classes.

. DGE can be easily extended to solve nonlinear dimensionality
reduction problems by establishing hierarchical structure with
intermediate nonlinear transformation.

. DGE extracts the directions for each pair of classes, so it can deal
with the case that the number of data dimensions is less than
the number of classes.

The rest of this paper is organized as follows. We review the
related work in Section 2. In Section 3, the proposed method is
presented in detail. In Section 4, experimental results on datasets
with different feature types are analyzed. In the last section, we
draw the conclusion.

2. Related work

In this section, we will first review the fundamental theory of
GEM. Formally, given a set of labeled data {x;, y;}i_; sampled iid a
distribution on R™ x [k]. GEM treats the pairwise classes as signal
and noise respectively. For pairwise classes d, j) e T = (G, jli, j € [k, i #j},
signal and noise on direction w are defined by the conditional sec-
ond moments given class labels E[(w'x)%ly = i] and E[(w'x)’ly = j].
Then the motivation of GME is to find the discriminative direction w
through maximizing the signal to noise ratio

Elw™x?y =i _ wERX'xly=ilw _w'Gw
Elwx?ly =j1  WEX'xy =jlw  w/Gw’

Rijw) =
)]

The local maximizers of Eq. (1) are equal to solve the generalized
eigenvectors G;w = AC;w. Since the objective function is homogeneous
in w, it is assumed that w'Gw = 1. Intuitively, GEM extracts the
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