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a b s t r a c t

Nonnegative matrix factorization (NMF) has been proved to be a powerful data representation method,
and has shown success in applications such as data representation and document clustering. However,
the non-negative constraint alone is not able to capture the underlying properties of the data. In this
paper, we present a framework to enforce general subspace constraints into NMF by augmenting the
original objective function with two additional terms. One on constraints of the basis, the other on
preserving the structural properties of the original data. This framework is general as it can be used to
regularize NMF with a wide variety of subspace constraints that can be formulated into a certain form
such as PCA, Fisher LDA and LPP. In addition, we present an iterative optimization algorithm to solve the
general subspace constrained non-negative matrix factorization (GSC NMF). We show that the resulting
subspace has enriched representation power as shown in our experiments.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Finding a suitable representation is a fundamental problem in
many machine learning tasks, such as pattern recognition and
object detection [1–7]. A good representation can capture the
underlying structure of the data and can reduce the dimension-
ality so as to make the higher level inference easier. Subspace
representations construct a subspace from the original high dim-
ensional space and represent them as the projection on the sub-
space. It has been shown that subspace methods not only reduces
the computational cost due to the lower dimensionality but also
makes the higher level inference easier.

Subspace methods such as principal component analysis (PCA)
[8,9,1], linear discriminative analysis (LDA) [10,11] and locality
preserving projection (LPP) [12] can be understood as matrix fac-
torization subject to different constraints. These constraints are
usually designed to find basis functions satisfying certain proper-
ties. Principal components analysis enforces an orthogonality con-
straint of the basis vectors, resulting in an orthogonal subspace to
capture the major variance of the data. As a well-known dimension
reduction method, PCA is extended in different ways, such as
incremental learning and tensor analysis [13–15]. Extension

approaches of LDA and LPP are also proposed for performance
improvement [16–19]. However, the resulting basis and coefficient
vectors can be negative, which does not have intuitive psychological
interpretation. Non-negative Matrix Factorization (NMF) is a sub-
space method with nonnegative constraints on both the basis and
coefficients. The non-negative constraints lead to a parts-based
representation because they allow only additive, not subtractive
combinations. Such a representation encodes the data using few
active components, which makes the basis easy to interpret. The
previous research works have shown the superior performance of
NMF on document clustering [20], text mining [21,22], pattern
recognition [23,24] and audio analysis [25,26].

However, the non-negative constraints alone may not be
enough to capture the underlying structure of the data as other
subspace methods for example PCA do. In this paper, we present a
framework to enforce general subspace constraints into NMF. This
framework is general as it can be used to regularize NMF with a
wide variety of subspace constraints that can be formulated into a
certain form such as PCA, LDA and LPP. In addition, we present an
iterative optimization algorithm to solve the general subspace
constrained NMF. We show that the resulting subspace has enri-
ched representation power as shown in our experiments.

There are also some other work that tries to incorporate con-
straints into the NMF. Local non-negative matrix factorization
(LNMF) [27] has been proposed to achieve a more localized NMF
algorithm with the aim of computing spatially localized basis add-
ing orthogonality constraints that modify the objective function.
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Some similar works focus on constraining the orthogonality such as
[28] and [29]. The former solves the optimization problem with the
orthogonality constraints, while the later embeds the constraints as
part of the cost function. In Sparse NMF [30], the author enforces
the sparseness constraints explicitly in the objective function.
However, these algorithms and their solutions are specifically
designed for a particular constraint, which are in contrast with our
approach since we aim at providing a general theoretical frame-
work and solution.

The rest of the paper is organized as follows: Section 2 gives a
brief review of the NMF. The general theoretical framework for
NMF with subspace constraints and their three examples PCA
NMF, Fisher NMF and LPP NMF are presented in Section 3. The
optimization algorithm is discussed in Section 4. The experimental
results will be shown in Section 5 and we conclude the paper in
Section 6.

2. A brief review of NMF

Generally, NMF [31] can be presented as the following opti-
mization problem:

C X BH B Hmin , s. t. , 0
B H,

( ≈ ) ≥

Here, xX ij
d n= [ ] ∈ × , each column of X is a sample vector. NMF

aims to find two non-negative matrices bB ij
d r= [ ] ∈ × and

hH ij
r n= [ ] ∈ × whose product can well approximate the original

matrix X. C (·) denotes the cost function. There are normally two
kinds of cost functions to represent the approximation in the NMF
optimization. Let Y¼BH, the first cost function is the Euclidean
distance between two matrices:
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Although the C1 and C2 are convex in B only or H only, they are
not convex in both variables together. Thus Lee and Seung [32]
presented iterative update algorithms to find the local minima of
the objective function C1 and C2 [32].

3. General subspace constrained NMF

In this section, we present a general subspace constrained non-
negative matrix factorization (GSC NMF) framework, which can
enforce various subspace constraints into NMF. Let uU B Bij

T= [ ] = ,
the problem is formulated as follows:
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α, β are const real number, and L n n∈ × is the parameter
matrix. The cost function C is either C1 or C2. When 0α > , mini-
mizing uij ij∑ leads to the basis (bi), which are orthogonal [33,27].

Table 1 shows different parameter settings for the GSC NMF
and their corresponding subspace constrains. With page limits, we
will only introduce the PCA NMF, Fisher NMF and LPP NMF in
detail in the following sections.

3.1. PCA NMF

The main idea of classical PCA is trying to maximize the
representation vectors' variance while keeping the orthogonality
of the basis. Assuming that the sample data set is x x x, , , n1 2{ … },
and the linear transform for PCA can be denoted as b x yT

i i= , here b
is the basis vector of B and yi are the representation vector. Then
the optimization function of PCA can be denoted as
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The vectors of b b b, , , r1 2 … are orthogonal.
When concerning the NMF form of X BH≈ , we have

X x x x, , , n1 2= [ … ], B b b b, , , r1 2= [ … ] and H h h h, , , n1 2= [ … ]. Then
the column vector of H can be viewed as the projection of original
data set X in the subspace constructing with the column vectors of
B, thus x Bhi i≈ .

We then let n nL I ee1/ 1/ 2 T= ( ) − ( ) . I is the identity matrix with
order of n and e is the n dimensional vector with all the elements
equaling to 1. We use m to denote the mean of the project vectors,
that is nm h1/ i

n
i1= ( ) ∑ = , and then
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Here, E h m h m T[( − )( − ) ] is the covariance matrix of the pro-
jections and thus maximizing HLHT is equivalent to maximizing

h mi
n

i1∑ −= , which is the core optimization function of PCA. At

the same time, minimizing ui j ij∑ ≠ will guarantee that all the basis

vectors are orthogonal.
Then let , 0α β > and n nL I ee1/ 1/ 2 T= ( ) − ( ) , the optimization

function (1) is a PCA constrained NMF.

Table 1
Various subspace constrained NMF via different parameter settings.

C α β L

LNMF [27,33] C1 or C2 α40 β40 I
PCA NMF C1 or C2 α40 β40

n n
L I ee1 1

2
T= −

Fisher NMF C1 or C2 α¼0 βo0
n

L I W ee2 1 T= − +

LPP NMF C1 or C2 α¼0 βo0 L D S= −
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