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a b s t r a c t

Nonnegative Matrix Factorization (NMF) as a popular technique for finding parts-based, linear repre-
sentations of nonnegative data has been successfully applied in a wide range of applications. This is
because it can provide components with physical meaning and interpretations, which is consistent with
the psychological intuition of combining parts to form whole. For practical classification tasks, NMF
ignores both the local geometry of data and the discriminative information of different classes. In
addition, existing research results demonstrate that leveraging sparseness can greatly enhance the ability
of the learning parts. Motivated by these advances aforementioned, we propose a novel matrix
decomposition algorithm, called Graph regularized and Sparse Non-negative Matrix Factorization with
hard Constraints (GSNMFC). It attempts to find a compact representation of the data so that further
learning tasks can be facilitated. The proposed GSNMFC jointly incorporates a graph regularizer and hard
prior label information as well as sparseness constraint as additional conditions to uncover the intrinsic
geometrical and discriminative structures of the data space. The corresponding update solutions and the
convergence proofs for the optimization problem are also given in detail. Experimental results demon-
strate the effectiveness of our algorithm in comparison to the state-of-the-art approaches through a set
of evaluations.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental problem in a variety of data analysis tasks is to
find an appropriate representation for the given data. The purpose
of data representation is to effectively uncover the latent structure
of the data so that further learning tasks, such as clustering and
classification, can be facilitated. Matrix factorization techniques as
fundamental tools for such data representation have been receiv-
ing more and more attention. Generally speaking, matrix factor-
ization is non-unique and by far many different methods of doing
so have been proposed by incorporating different constraints with
different criteria. The canonical techniques include Non-negative
Matrix Factorization (NMF) [1,2], the QR Decomposition (QRD),
Singular Value Decomposition (SVD), Principal Component Ana-
lysis (PCA), Independent Component Analysis (ICA), Linear Dis-
criminant Analysis (LDA), Regularized LDA [3], Deterministic Col-
umn-Based Matrix Decomposition [4], etc. Matrix factorization
aims to find two or more matrix factors whose product is a good
approximation to the original matrix. In practical applications, the
dimension of the decomposed matrix factors is often much

smaller than that of the original matrix, leading to compact
representation of the data points, which is helpful to other
learning tasks like clustering and classification. Roughly speaking,
matrix decomposition algorithms with strong performance tend to
satisfy two basic conditions: (1) it could uncover the intrinsic
geometric structures of the data clearly; and (2) it could reduce
dimensionality of original data, which in turn can facilitate other
learning tasks.

The aforementioned PCA and SVD decompose factorize the
matrix as the linear combination of principle components. Unlike
these methods, NMF [1,2] specializes in that it enforces the con-
straint that the elements of the factor matrices must be non-
negative, i.e., all elements must be equal to or greater than zero.
And such a nonnegative constraint leads NMF to a parts-based
representation of the object in the sense that it only allows addi-
tive, not subtractive, combination of the original data. Therefore, it
is an ideal dimensionality reduction algorithm for image proces-
sing, face recognition, and document clustering, where it is natural
to consider the object as a combination of parts to form a whole
representation. Since NMF is an unsupervised learning algorithm,
it is inapplicable to many real-world problems where limited
knowledge from domain experts is available.

After many years of research and development, a plenty of
improved methods have been proposed on the basis of NMF. Hoyer
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[5] and Dueck [6] et al. computed sparse matrix factorization, in
which sparseness constraint is enforced to enhance the ability of
learning parts. Li et al. [7] put forward the Local Nonnegative
Matrix Factorization (LNMF) method, for learning spatially loca-
lized, parts-based subspace representation of visual patterns, giv-
ing a set of bases which not only allows a part-based representa-
tion of images but also manifests localized features. But it has been
pointed out that LNMF could not represent the data very well [8].
Hoyer applied NMF to the sparse code, and proposed the Non-
negative Sparse Coding (NSC) [9]. Furthermore, he brought up a
Sparse NMF (SNMF) algorithm which can be controlled explicitly
[10]. Cai et al. [11] presented the Graph Regularized Nonnegative
Matrix Factorization (GRNMF) approach to encode the geometrical
information of the data space by constructing a nearest neighbor
graph to model the local manifold structure. When label infor-
mation is available, it can be naturally incorporated into the graph
structure. Concretely, if two data points share the same label, a
large weight will be assigned to the edge connecting them. And if
two data points have different labels, the corresponding weight is
set to be zero. By taking the label information as additional con-
straints, Liu et al. [12] proposed the Constrained Nonnegative
Matrix Factorization (CNMF), which incorporates the label infor-
mation as additional constraints. Ding et al. [13] proposed a semi-
nonnegative matrix factorization algorithmwhere only one matrix
factor is restricted to contain nonnegative entries, while it relax
the constraint on the basis vectors. Yuan et al. proposed Binary
Sparse Nonnegative Matrix Factorization in [14], making full use of
the sparseness property of the basis vector to remove easy-
excluded Haar-like box functions.

Due to the effectiveness and importance of data representa-
tions, recently variants of NMF have been widely applied in
extensive domains, such as document clustering [15,16], audio-
visual document structuring [17], speech and image cryptosystems
[18], image classification and annotation [19], blind source
separation [20], facial expression recognition [21], and image
search reranking [22], etc. A comprehensive review about the
principles, basic models, properties, and algorithms of NMF is
systematically introduced in [23]. What’s more, sparseness con-
straints together with many learning methods have been applied
to video search reranking [24] and image categorization [25].

Motivated by recent progress in matrix factorization, we pro-
posed a novel NMF method for data representation by exploiting
three constraint conditions, including graph-based regularizer,
sparseness requirement and prior label information offered by few
labeled data points. The proposed NMF is referred as Graph reg-
ularized and Sparse Nonnegative Matrix Factorization with hard
Constraints (GSNMFC) to represent the data in a more reasonable
way. In this method, we incorporated hard prior label information
into the graph to encode the intrinsic geometrical and dis-
criminative structures of the data space, and also take the label
information as additional constraints to decompose matrix. Fur-
thermore, we exploited extra sparseness constraints to make the
coefficients much sparser. It is under the assumption that if the
sparseness levels of the factors are improved, the ability of the
learning parts can be enhanced. By combining the three con-
straints, we expect that further learning performance, such as the
recognition rate and clustering results, can be further improved in
the new data representation. What’s more, we proved the con-
vergence of the raised method. Finally, we carried out the exten-
sive experiments on the common face databases to validate the
effectiveness and efficiency of the novel matrix factorization
method proposed in this paper.

The main contributions of our work can be summarized as
follows:

(1) The proposed method possesses the merit of CNMF, which takes
the label information as additional hard constraints and is
parameter free. On the other hand, the proposed method has
the advantage of GRNMF, which exploits the intrinsic geometric
structure of the data distribution and incorporates it as an extra
regularization term. In a nutshell, the algorithm presented here
incorporates the virtues of the two methods mentioned above.
Moreover, the proposed method can have better performance
on clustering accuracy and normalized mutual information.

(2) Note that with the sparseness levels of the factors improved the
discrimination ability of the learning parts can be enhanced, in
which sense sparseness is rather an indispensible constraint to
NMF instead of an optional one. Thereby on the basis of GRNMF
and CNMF, we enforces additional sparseness constraints,
which is beneficial to give rise to a much sparser data that is
conductive to other learning tasks like classification and
clustering.

The rest of the paper is organized as follows. First, we give brief
reviews of related methods including NMF, CNMF and GNMF in
Section 2. Next, in Section 3 our proposed algorithm is described in
details and theoretical proof of convergence of our optimization
scheme is provided as well. Then Section 4 reports extensive
experimental results and corresponding analyses on two popular
datasets followed by some concluding remarks made in Section 5.

2. Brief reviews

2.1. NMF

Given a data matrix X x x x R, , , n
m n

1 2= [ … ] ∈ × , where x Ri
m∈ is a

sample vector, and the elements of each sample vector is non-
negative. The goal of NMF is to seek two nonnegative matrices
U Rm k∈ × and V Rn k∈ × k mn m n/( ≤ ( + )). Especially, the elements of
the two matrices are all negative, in order to guarantee that the
similarity between X and UVT is the highest, that is to say, it
reduces to minimize the following objective function:

O X UV U Vs. t. 0, 0 1F
2= ‖ − ‖ > > ( )

where OF is referred as the Frobenius norm.
Eq. (1) is a description form of the objective functions from the

Euclidean space perspective. And there is another description form
from the point view of divergence as below:
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It can be proven that (1) and (2) are both convergent. According
to the aforementioned equations, the multiplicative iterative
updating formula [1,2] can be achieved as below.
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where U w V v,ik jk= [ ] = [ ]. At the very beginning of the iterative
update process, the two nonnegative matrices Uo and Vo are
initialized at random. The iterative update procedure is executed
repeatedly according to (3) and (4) until the given terminal con-
dition is met. Ultimately, the final U and V can be obtained.
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