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Over the last two decades, dimension reduction for visualization has gained a high amount of attention
in visual data mining where the data is represented by high-dimensional features. Basically, this
approach leads to an unbalanced and occluded distribution of visual data in display space, giving rise to
difficulties in browsing the data. In this paper we propose an approach for the visualization of image
collections in such a way as (1) images are not occluded by each other, and the provided space is used as
much as possible; (2) the similar images are positioned close together; (3) an overview of data is feasible.
To fulfill these requirements, we propose to use regularized Nonnegative Matrix Factorization (NMF)
controlled by parameters to reduce the dimensionality of data. Experiments performed on optical and
radar images confirm the flexibility of proposed method in visualizing large-scale visual data. Finally, an
immersive 3D virtual environment is suggested, to visualize the images, to allow the user to navigate and

explore the data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The world is dealing with a massive amount of collected data,
where much of it is visual data (e.g., images and videos). Facebook
reports six billion photo uploads per month. The amount of Earth
Observation (EO) images is in the order of several Terra bytes per
day. Therefore, browsing and visualizing visual data could help to
design new Visual Data Mining (VDM) systems. In such systems,
usually, the content of each image (e.g., color, texture, shape) is
represented by high-dimensional feature vectors [1,2], where the
similarity relationship between images is measured based on the
distance between feature points. In VDM a query image might be
fetched into the system and the resulting similar images are
visualized as thumbnails in a 2D or 3D display space. In interactive
VDM [3-5], the interface between the human and the machine
plays a key role in enhancing the performance of the system. The
interface should provide the user the ability to gain a deep
understanding of the data by its visualization.

Visualization of the high-dimensional data (e.g., images repre-
sented by high dimensional features) has been always a challen-
ging problem in the area of information mining and visualization.
Perhaps the most common way to tackle this problem is to utilize
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Dimensionality Reduction (DR) techniques, to map high dimen-
sional data to 2D or 3D for visualization. During the last 20 years
numerous methods, such as linear or nonlinear, have been pro-
posed to reduce the dimensionality [6-11]. The most common
linear methods are Principal Component Analysis (PCA) [12] and
Multidimensional Scaling (MDS) [13]. Nonlinear methods assume
that the data points are coming from a manifold embedded in the
high-dimensional space. Depending on whether to preserve the
local or global structure of the manifold, they can be categorized,
typically, in local and global methods. Local methods like Locally
Linear Embedding (LLE) [14] and Laplacian Eigenmap (LE) [15]
emphasize to preserve the locality of data points in contrast to
global methods like Stochastic Neighbor Embedding (SNE) [16]
and Isomap [17], which emphasize on preserving the global
structure of data points.

The NMF was introduced in [18] as a method for dimensionality
reduction, where the low-dimensional structure is presented by
two nonnegative matrices. Due to the non-negativity of the
matrices, the vectors in the low-dimensional representation are
the additive combinations of the basis vectors, which leads to a
part-based representation. This representation has been shown to
correspond to the way images are represented in the human brain
[19]. As an extension to the NMF, Graph regularized NMF (GNMF)
was proposed that tries to preserve the similarity of the feature
vectors in the low-dimensional space [20]. This technique applies
the manifold learning technique LLE [14] and adds an additional
term to the main objective function.
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Dimensionality reduction is widely employed to determine the
position of images [15,16] in 2D or 3D display space. However, the
images are mostly occluded and much of the display space is not
used, giving rise to difficulties for the user to gain understanding
from the data. To address this issue, some works have been pro-
posed to arrange the images in display space based on optimizing
a predefined cost function [21-23]. In [22,23] the authors estimate
the two-dimensional locations of the images by minimizing the
overlap between images. They defined a cost function as a com-
promise between similarity preserving and overlap minimization
and used gradient descent method to optimized this cost function.
Additionally, the authors in [21] proposed an algorithm that
spreads images equally in a given area. This is achieved by mini-
mizing a cost function, which consists of a structure-preserving
term, an entropy term and a term that penalizes locations of
images outside the predefined layout. All the aforementioned
methods first reduce the dimensionality of the data and then
change the position of the data points to fulfill the other
requirements. In summary, a good visualization of images should
fulfill three main requirements listed as follows [23]:

(i) Structure preservation: the relations between images, mainly
similarity and dissimilarity, should be preserved.
(ii) Visibility: All displayed images should be visible by the user
(i.e. less overlap between images).
(iii) Overview: the user should be able to gain an overview of the
distribution of images.

In this paper we propose a technique for arranging image col-
lections in 2D/3D display space for the task of image retrieval. The
main contribution of our work is (1) developing a novel regular-
ized NMF to position image collections by taking into account the
three aforementioned requirements; (2) developing an immersive
3D virtual environment to visualize the images [24,25] to allow
the user to navigate inside the data and explore it. Basically, there
is no harm in non-negativity constraint of NMF, since each image
is represented by a Bag-of-Words (BoW) model of local features
[26], which has nonnegative values. In BoW, an image is treated as
a document and its local features as words. The extracted feature
from all images are pooled and clustered. Then, a histogram of
extracted local features from each image is constructed based on
cluster centers to represent the image. In our work, we propose a
regularization term for each aforementioned requirements con-
trolled by some parameters. Precisely, we add one regularization
for structure preservation requirement, one for overview
requirement and one for visibility requirement. For structure
preservation we consider the sum of locality (similarity) preser-
ving [20] and farness preserving [27]. The Renyi entropy is used to
define the visibility regularizer. Finally, the result of clustering in
the original space is selected to define the overview regularization.
These regularization terms, controlled by some parameters, are
added to the main NMF function to define the main formulation of
image positioning. To visualize the images in a 3D virtual envir-
onment, we utilize Virtual Reality (VR) technology to build an
immersive 3D virtual environment, namely Cave Automated Vir-
tual Environment (CAVE). Evidently, a good visualization of images
does not depend on only the position of images, but also a proper
display space can deliver much more information about the data
to the user.

The rest of paper is organized as follows: Section 2 provides a
review of NMF method and its updating rules. In Section 3 we
explain our proposed regularized NMF for the visualization of
image collections. The details of the immersive visualization sys-
tem are provided in Sections 4. Experimental validations are
represented in Section 5. Finally, in Section 6 we draw our
conclusions.

2. A review of NMF

We consider a data matrix X = [*1, ..., &y] € R™*N where x; is a
feature vector, N is the number of samples and M is the dimension
of the feature vectors. Given a new reduced dimension K, the NMF
algorithm approximates the matrix X by a product of two non-
negative matrices U = [uy] € R™*¥ and V = [vy] e RN*K

X~UvT, e))

Thereby, in the new representation, U can be considered as a set of
basis vectors and V = [v, ..., v,4]" as the coordinates of each sample
with respect to these basis vectors. Perhaps, the two most popular
cost functions, that quantify the quality of the approximation, are
the square of the Frobenius norm of the matrix differences and the
divergence between the two matrices [28]. During the rest of the
paper we will focus on the Frobenius cost function, for which the
NMF can be stated as the following minimization problem:

min Of = I1X—UVT|I? 2)
st.U=[uy]=0
V= [Vie] = 0.

While the minimization problem is convex with respect to U and
with respect to V, it is not convex in both variables together.
Therefore there exist many local minima. In [28] Lee and Seung
presented an update rule that finds a local minimum as follows:
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It is proved [28] that the update rules find a local minimum for the
minimization objective (2).

3. Regularized NMF for visualization

In order to achieve a good visualization, we require the fol-
lowing constraints for the low-dimensional representation:

3.1. Structure preservation

For the preservation of structure, we require that similar ima-
ges are placed close to each other and dissimilar images far away
from each other. The constraint for similarity, which was intro-
duced with the GNMF-algorithm in [20], forces samples which are
close to each other in the high dimensional space, to be also close
to each other in the low-dimensional representation. This con-
straint is achieved with the help of a weight matrix W, which
represents the internal manifold structure of the high-dimensional
data. This matrix is based on the construction of a nearest
neighbor graph, where for each point x; we find its k nearest
neighbors and put an edge between x; and each neighbor. Based
on this graph, there are many possibilities to construct the matrix
W. In this paper we adopt the heat kernel weighting, where

Wy=e-(x-x1%/0) 5 t 650 “)

if nodes j and [ are connected and O otherwise. Based on W the
authors of [20] introduced the following term for similarity pre-
servation in the NMF-objective:

1
O = EZ HVj—VI I 2le
il

=Tr(VTLV) (5)

where L=D—-W and D is a diagonal matrix, whose entries are
column sums of W, D; =>",Wj;.
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