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a b s t r a c t

We consider the problem of image representation for visual analysis. When representing images as
vectors, the feature space is of very high dimensionality, which makes it difficult for applying statistical
techniques for visual analysis. One then hope to apply matrix factorization techniques, such as Singular
Vector Decomposition (SVD) to learn the low dimensional hidden concept space. Among various matrix
factorization techniques, sparse coding receives considerable interests in recent years because its sparse
representation leads to an elegant interpretation. However, most of the existing sparse coding algorithms
are computational expensive since they compute the basis vectors and the representations iteratively. In
this paper, we propose a novel method, called Orthogonal Projective Sparse Coding (OPSC), for efficient
and effective image representation and analysis. Integrating the techniques from manifold learning and
sparse coding, OPSC provides a sparse representation which can capture the intrinsic geometric structure
of the image space. Extensive experimental results on real world applications demonstrate the effec-
tiveness and efficiency of the proposed approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Image representation is the fundamental problem in image
processing. Researchers have long sought effective and efficient
representations of images. For a given image database, we may
have thousands of distinct features. However, the degree of the
freedom of each image could be far less. Instead of the original
feature space, one might hope to find a hidden semantic “concept”
space to represent the images. The dimensionality of this “con-
cept” space will be much smaller than the feature space. To
achieve this goal, matrix factorization based approaches have
attracted considerable attention in the last decades [1,6,9,15].

Given an image data matrix X m n∈ × , each column of X cor-
responding to an m-dimensional image vector, the matrix factor-
ization methods find two matrices U m k∈ × and A k n∈ × whose
product can well approximate X . Each column vector of U can be
regarded as a basis vector corresponding to a certain semantic
concept and each column vector of A is the representation of an
image in this k-dimensional concept space.

One of the most well known matrix factorization methods is
Singular Value Decomposition (SVD) [13], which serves as the
basis of Principle Component Analysis (PCA) [11] and Latent

Semantic Analysis (LSA) [9]. SVD is optimal in the sense of
reconstruction error and thus optimal for data representation
when Euclidean structure is concerned. Another popular matrix
factorization method is Non-negative Matrix Factorization (NMF)
[15], which requires the factorization matrices (both U and A) are
non-negative. The non-negative constraints allow only additive
combinations among different basis vectors and it is believed that
NMF can learn a parts-based representation [15]. Inspired by bio-
logical visual systems, people has been arguing that sparse fea-
tures of data points are useful for learning [10,22]. Sparse Coding
(SC) [17,23] is recently a popular matrix factorization method
which requires the representation matrix A to be sparse. The
sparseness of A indicates that each sample will only relate to
several concepts (with non-zero coefficients to the corresponding
basis vectors).

All the above three matrix factorization methods only consider the
Euclidean structure of the image space. Recent studies have shown
that human generated image data are probably sampled from a sub-
manifold of the ambient Euclidean space [2,24,25]. In fact, the image
data cannot possibly “fill up” the high dimensional Euclidean space
uniformly. Therefore, the intrinsic manifold structure needs to be
considered while performing the matrix factorization. Cai et al. [6]
extend the traditional NMF to Graph regularized NMF (GNMF). By
incorporating a geometric regularizer [3] on the representation matrix
A , GNMF is able to exploring the intrinsic manifold structure of the
data. The similar idea has also been applied on sparse coding which
leads to GraphSC [29]. However, it is not clear for these approaches
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that how to efficiently find the low dimensional representation of a
new sample (out-of-sample extension).

The optimization problems in both NMF (GNMF) and SC
(GraphSC) are non-convex. The typical algorithms [6,16,17,29]
compute the basis matrix U and the representations A iteratively.
Thus, these algorithms are computational expensive. Motivated
from recent progress on orthogonal projective analysis [18], in this
paper we propose a novel matrix factorization method, called
Orthogonal Projective Sparse Coding (OPSC), for efficient image
representation. OPSC is a two-step approach including basis
learning and sparse representation learning. In the first step, OPSC
learns the basis by exploiting the intrinsic geometric structure of
the data. By requiring the gradient field as orthogonal as possible
to the tangent spaces of the data, OPSC encodes the semantic
structure in the basis vectors. In the second step, OPSC uses the
LASSO [14] to learn a sparse representation with respect to the
learned basis for each image.

The rest of the paper is organized as follows: in Section 2, we
provide a brief review of matrix factorization. Our Orthogonal
Projective Sparse Coding (OPSC) method is introduced in Section 3.
The experimental results are presented in Section 4. Finally, we
provide the concluding remarks in Section 5.

2. Background

Given a data set with high dimensionality, matrix factorization is a
common approach to “compress” the data by finding a set of basis
vectors and the representation with respect to the basis for each data
point. Let X x x, , n

m n
1= [ … ] ∈ × be the data matrix, matrix factor-

ization can be mathematically defined as finding two matrices
U m k∈ × and A k n∈ × whose product can best approximate X:

X UA.≈

Each column of U can be regarded as a basis vector which captures
the higher-level features in the data and each column of A is the k-
dimensional representation of the original inputs with respect to the
new basis. From this sense, matrix factorization can also be regarded
as a dimensionality reduction method since it reduces the dimension
from m to k.

A common way to measure the approximation is by Frobenius
norm of a matrix ∥·∥. Thus, the matrix factorization can be defined
as the optimization problem as follows:

X UAmin
1U A,

2∥ − ∥ ( )

Various matrix factorization algorithms add different constraints
on the above optimization problem based on different goals.

Singular Value Decomposition (SVD) is one of the most popular
matrix factorization algorithms [13], which requires U U IT = . Suppose
the rank of X is r, the SVD decomposition of X is as follows:

X U V , 2TΣ= ( )

where diag , , r1Σ σ σ= ( … ) and 0r1 2σ σ σ≥ ≥ ⋯ ≥ > are the singular
values of X, the columns of U m r∈ × are called left singular vectors
and the columns of V n r∈ × are called right singular vectors. It can
be proven that the first k columns of U and the first k rows of VTΣ are
the optimal solution of the optimization problem (1) [13].

Another popular matrix factorization algorithm is Non-nega-
tive Matrix Factorization (NMF) [15], which focuses on the analysis
of data matrices whose elements are non-negative. NMF adds the
non-negative constraint on both U and A in the optimization
problem (1). The non-negative constraints allow only additive
combinations among different basis vectors. Thus, it is believed
that NMF can learn a parts-based representation [15].

The representation matrix A learned in the above two methods
is usually dense. Since each basis vector (column vector of U) can
be regarded as a concept, the denseness of A indicates that each
image is a combination of all the concepts. This is contrary to our
common knowledge since most of the images only include several
semantic concepts. Sparse Coding (SC) [10,23] is a recently popular
matrix factorization method trying to solve this issue. SC adds the
sparse constraint on A , more specifically, on each column of A . In
this way, SC can learn a sparse representation. SC has several
advantages for data representation. First, it yields sparse repre-
sentations such that each data point is represented as a linear
combination of a small number of basis vectors. Thus, the data
points can be interpreted in a more elegant way. Second, sparse
representations naturally make for an indexing scheme that would
allow quick retrieval. Third, the sparse representation can be over-
complete, which offers a wide range of generating elements.
Potentially, the wide range allows more flexibility in signal
representation and more effectiveness at tasks like signal extrac-
tion and data compression. Finally, there is considerable evidence
that biological vision adopts sparse representations in early visual
areas [22]. The sparse coding approach is fundamentally different
from those sparse subspace learning methods, e.g., Sparse PCA
[31], Sparse LDA [21] and Sparse LPP [4,5]. Instead of learning a
sparse A , the sparse subspace learning methods [4,5,21,31] learn a
sparse U. The low dimensional representation matrix A learned by
these sparse subspace learning methods is still dense.

All the above three matrix factorization methods only consider the
Euclidean structure of the image space. Recent studies have shown
that human generated image data are probably sampled from a sub-
manifold of the ambient Euclidean space [2,24,25]. In fact, the image
data cannot possibly “fill up” the high dimensional Euclidean space
uniformly. Therefore, the intrinsic manifold structure needs to be
considered while performing the matrix factorization. A natural
assumption here could be that if two data points x x,i j are close in the
intrinsic geometry of the data distribution, then ai and aj, the
representations of this two points with respect to the new basis, are
also close to each other. This assumption is usually referred to as
manifold assumption [3,7], which plays an essential role in the
development of various kinds of algorithms including dimensionality
reduction algorithms [2] and semi-supervised learning algorithms
[3,30]. Recent studies in spectral graph theory [8] and manifold
learning theory [2] have demonstrated that the local geometric
structure can be effectively modeled through a nearest neighbor
graph on a scatter of data points. Consider a graph with n vertices
where each vertex corresponds to an image in the data set. The edge
weight matrix W is usually defined as follows:

⎧⎨⎩
N N

W
x x x x1 if or

0 otherwise. 3
ij

i p j j p s=
∈ ( ) ∈ ( )

( )

where N xp i( ) denotes the set of p nearest neighbors of xi. Define a
diagonal matrix D whose entries are column (or row, since W is
symmetric) sums of W , D Wii j ij= ∑ , we can compute the graph
Laplacian L D W= − [8].

The manifold assumption can then be mathematically for-
mulated as minimizing the following geometric regularizer
[3,6,29]:

A LATr , 4T= ( ) ( )

where Tr(·) denotes the trace of a matrix. Adding this regularizer
in Eq. (1), we get the objective function of manifold regularized
matrix factorization [6,29]:

X UA A LAmin Tr .
5

T

U A,
2 λ∥ − ∥ + ( ) ( )
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