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a b s t r a c t

Many image processing applications benefited remarkably from the theory of sparsity. One model of
sparsity is the cosparse analysis one. It was shown that using ℓ1-minimization one might stably recover a
cosparse signal from a small set of random linear measurements if the operator is a frame. Another effort
has provided guarantee for dictionaries that have a near optimal projection procedure using greedy-like
algorithms. However, no claims have been given for frames. A common drawback of all these existing
techniques is their high computational cost for large dimensional problems.

In this work we propose a new greedy-like technique with theoretical recovery guarantees for frames
as the analysis operator, closing the gap between greedy and relaxation techniques. Our results cover
both the case of bounded adversarial noise, where we show that the algorithm provides us with a stable
reconstruction, and the one of random Gaussian noise, for which we prove that it has a denoising effect,
closing another gap in the analysis framework. Our proposed program, unlike the previous greedy-like
ones that solely act in the signal domain, operates mainly in the analysis operator's transform domain.
Besides the theoretical benefit, the main advantage of this strategy is its computational efficiency that
makes it easily applicable to visually big data. We demonstrate its performance on several high
dimensional images.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

For more than a decade the idea that signals may be repre-
sented sparsely has a great impact on the field of signal and image
processing. New sampling theory has been developed [1] together
with new tools for handling signals in different types of applica-
tions, such as image denoising [2], image deblurring [3], super-
resolution [4], radar [5], medical imaging [6] and astronomy [7], to
name a few [8]. Remarkably, in most of these fields the sparsity
based techniques achieve state-of-the-art results.

The classical sparse model is the synthesis one. In this model
the signal xARd is assumed to have a k-sparse representation
αARn under a given dictionary DARd�n. Formally,

x¼Dα; ‖α‖0rk; ð1Þ
where ‖ � ‖0 is the ℓ0-pseudo norm that counts the number of non-
zero entries in a vector. Notice, that the non-zero elements in α
corresponds to a set of columns that creates a low-dimensional
subspace in which x resides.

Recently, a new sparsity based model has been introduced: the
analysis one [9,10]. In this framework, we look at the coefficients
of Ωx, the coefficients of the signal after applying the transform
ΩARp�d on it. The sparsity of the signal is measured by the

number of zeros inΩx. We say that a signal is ℓ-cosparse ifΩx has
ℓ zero elements. Formally,

‖Ωx‖0rp�ℓ: ð2Þ

Remark that each zero element in Ωx corresponds to a row in
Ω to which the signal is orthogonal and all these rows define a
subspace to which the signal is orthogonal. Similar to synthesis,
when the number of zeros is large the signal's subspace is low
dimensional. Though the zeros are those that define the subspace,
in some cases it is more convenient to use the number of non-
zeros k¼ p�ℓ as done in [11,12].

The main setup in which the above models have been used is

y¼Mxþe; ð3Þ

where yARm is a given set of measurements, MARm�d is the
measurement matrix and eARm is an additive noise which is
assumed to be either adversarial bounded noise [1,8,13,14] or with
a certain given distribution such as Gaussian [15–17]. The goal is to
recover x from y and this is the focus of our work. For details about
other setups, the curious reader may refer to [18,19,20–24].

Clearly, without a prior knowledge it is impossible to recover x
from y in the case mod, or have a significant denoising effect
when e is random with a known distribution. Hence, having a
prior, such as the sparsity one, is vital for these tasks. Both the
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synthesis and the analysis models lead to (different) minimization
problems that provide estimates for the original signal x.

In synthesis, the signal is recovered by its representation, using

α̂S�ℓ0 ¼ argmin
n

~αAR
‖ ~α‖0 s:t ‖y�MD ~α‖2rλe; ð4Þ

where λe is an upper bound for ‖e‖2 if the noise is bounded and
adversarial (S�ℓ0 refers to synthesis-ℓ0). Otherwise, it is a scalar
dependent on the noise distribution [15,16,25]. The recovered
signal is simply x̂S�ℓ0 ¼Dα̂S�ℓ0 . In analysis, we have the following
minimization problem:

x̂A�ℓ0 ¼ argmin ~x ARd‖Ω ~x‖0 s:t ‖y�M ~x2rλe: ð5Þ
The values of λe are selected as before depending on the noise
properties (A�ℓ0 refers to analysis-ℓ0).

Both (4) and (5) are NP-hard problems [10,26]. Hence,
approximation techniques are required. These are divided mainly
into two categories: relaxation methods and greedy algorithms. In
the first category we have the ℓ1-relaxation [9] and the Dantzig
selector [15], where the latter has been proposed only for synth-
esis. The ℓ1-relaxation leads to the following minimization pro-
blems for synthesis and analysis respectively1

α̂S�ℓ1 ¼ argmin
~αARn

‖ ~α‖1 s:t: ‖y�MD ~α2rλe; ð6Þ

x̂A�ℓ1 ¼ argmin
~x

ARd‖Ω ~x‖1 s:t: ‖y�M ~x‖2rλe: ð7Þ

Among the synthesis greedy strategies we mention the
thresholding method, orthogonal matching pursuit (OMP) [29–
31], CoSaMP [32], subspace pursuit (SP) [33], iterative hard
thresholding [34] and hard thresholding pursuit (HTP) [35]. Their
counterparts in analysis are thresholding [36], GAP [10], analysis
CoSaMP (ACoSaMP), analysis SP (ASP), analysis IHT (AIHT) and
analysis HTP (AHTP) [37].

An important question to ask is what are the recovery guar-
antees that exist for these methods. One main tool that was used
for answering this question in the synthesis context is the
restricted isometry property [13]. It has been shown that under
some conditions on the RIP of MD, we have in the adversarial
bounded noise case that

‖α̂alg�α‖22rCalg‖e‖22; ð8Þ
where α̂alg is the recovered representation by one of the approx-
imation algorithms and Calg42 is a constant that depends on the
RIP of MD and differs for each of the methods [1,13,31–34,37–39].
This result implies that these programs achieve a stable recovery.

Similar results were provided for the case where the noise is
randomwhite Gaussian with variance s2 [15–17,40,41]. In this case
the reconstruction error is guaranteed to be Oðklog ðnÞs2Þ [15–17].
Unlike the adversarial noise case, here we may have a denoising
effect, as the recovery error can be smaller than the initial noise
power ds2. Remark that the above results can be extended also to
the case where we have a model mismatch and the signal is not
exactly k-sparse.

In the analysis framework we have similar guarantees for the
adversarial noise case. However, since the analysis model treats
the signal directly, the guarantees are in terms of the signal and
not the representation like in 8. Two extensions for the RIP have
been proposed providing guarantees for analysis algorithms. The
first is the D-RIP [11]:

Definition 1.1 (D-RIP (Candès et al. [11])). A matrix M has the
D-RIP with a dictionary D and a constant δk ¼ δD;k, if δk is the

smallest constant that satisfies

ð1�δkÞ‖D ~α‖22r‖MD ~α‖22r ð1þδkÞ‖D ~α‖22; ð9Þ
whenever ~α is k-sparse.

The D-RIP has been used for studying the performance of the
analysis ℓ1-minimization [11,42,43]. It has been shown that if Ω is
a frame with frame constants A and B, D¼Ω† and M has the D-RIP
with δakrδA�ℓ1 ða;A;BÞ then

‖x̂A�ℓ1 �x‖22rCA�ℓ1
‖e‖22þ

‖Ωx�½Ωx�k‖21
k

 !
; ð10Þ

where the operator ½��k is a hard thresholding operator that keeps
the largest k elements in a vector, δA�ℓ1 ða;A;BÞ is a function of a, A
and B, and aZ1 and CA�ℓ1 are some constants. A similar result has
been proposed for analysis ℓ1-minimization with the finite differ-
ence operator [28,44].

The second is the O-RIP [37], which was used for the study of
the greedy-like algorithms ACoSaMP, ASP, AIHT and AHTP.

Definition 1.2 (O-RIP (Giryes et al. [37])). A matrix M has the
O-RIP with an operator Ω and a constant δΩ;ℓ, if δΩ;ℓ is the
smallest constant that satisfies

ð1�δΩ;ℓÞ‖v2
2r‖Mv2

2rð1þδΩ;ℓÞ‖v‖22; ð11Þ
whenever Ωv has at least ℓzeroes.

With the assumption that there exists a cosupport selection pro-
cedure Ŝℓ that implies a near optimal projection for Ω with a
constant Cℓ (see Definition 3.1 in Section 3). It has been proven for
such operators that if δΩ;aℓrδalgðCℓ;C2ℓ�p; s2MÞ then
‖x̂A�ℓ1 �x‖22rCalg ‖e‖22þ‖x�xℓ‖s22

� �
; ð12Þ

where s2M is the largest singular value of M, xℓ is the best
ℓ-cosparse approximation for x, δalgðCℓ;C2ℓ�p; s2MÞ is a function
of Cℓ, C2ℓ�p and s2M, and aZ3 and Calg are some constants that
differ for each technique.

Notice that the conditions in synthesis imply that no linear
dependencies can be allowed within small number of columns in
the dictionary as the representation is the focus. The existence of
such dependencies may cause ambiguity in its recovery. Since the
analysis model performs in the signal domain, i.e. focus on the
signal and not its representation, dependencies may be allowed
within the dictionary. A recent series of contributions have shown
that high correlations can be allowed in the dictionary also in the
synthesis framework if the signal is the target and not the repre-
sentation [45–51].

1.1. Our contribution

The conditions for greedy-like techniques require the constant
Cℓ to be close to 1. Having a general projection scheme with Cℓ ¼ 1
is NP-hard [52]. The existence of a program with a constant close
to one for a general operator is still an open problem. In particular,
it is not knownwhether there exists a procedure that gives a small
constant for frames. Thus, there is a gap between the results for
the greedy techniques and the ones for the ℓ1-minimization.

Another drawback of the existing analysis greedy strategies is
their high complexity. All of them require applying a projection to
an analysis cosparse subspace, which implies a high computa-
tional cost. Therefore, unlike in the synthesis case, they do not
provide a “cheap” counterpart to the ℓ1-minimization.

In this work we propose a new efficient greedy program, the
transform domain IHT (TDIHT), which is an extension of IHT that
operates in the analysis transform domain. Unlike AIHT, TDIHT has
a low complexity, as it does not require applying computationally
demanding projections like AIHT, and it inherits guarantees

1 Note that setting Ω to be the finite difference operator in 7 leads to the
anisotropic version of the well-known total variation (TV) [27]. See [28,44] for
more details.
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