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a b s t r a c t

Manifold learning and Sparse Representation Classifier are two popular techniques for face recognition.
Because manifold learning can find low-dimensional representations for high-dimensional data, it is
widely applied in computer vision and pattern recognition. Most of the manifold learning algorithms can
be unified in the graph embedding framework, where the first step is to determine the adjacent graphs.
Traditional methods use k nearest neighbor or the ε-ball schemes. However, they are parametric and
sensitive to noises. Moreover, it is hard to determine the size of appropriate neighborhoods. To deal with
these problems, in this paper, Graph Regularized Sparsity Discriminant Analysis, GRSDA, for short, is
proposed. Based on graph embedding and sparsity preserving projection, the weight matrices for intrinsic
and penalty graphs are obtained through sparse representation. GRSDA seeks a subspace in which
samples in intra-classes are as compact as possible while samples in inter-classes are as separable as
possible. Specifically, samples in the low-dimensional space can preserve the sparse locality relationship
in the same class, while enhancing the separability for samples in different classes. Hence, GRSDA can
achieve better performance. Extensive experiments were carried out on ORL, YALE-B and AR face data-
bases, and the results confirmed that the proposed algorithm outperformed LPP, UDP, SPP and DSNPE.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Face recognition, as one popular application of pattern recogni-
tion and computer vision, has aroused great interest among
researchers. The main steps for face recognition include preproces-
sing, feature extraction and classification. In order to make the
subsequent tasks easier, many algorithms have been proposed for
the preprocessing part, like detection [1,2], and a survey on face
detection can be found in [3]. Classification for face recognition has
developed from the simple yet elegant nearest neighbor (NN) [4]
method to recently proposed regression-based classification algo-
rithms such as Linear Regression Classifier (LRC) [5], Sparse Repre-
sentation Classifier (SRC) [6] and Collaborative Representation
Classifier (CRC) [7]. These three regression-based algorithms have
achieved comparable results and they have shown to have a great
potential in practical applications. Moreover, in [8–10] many exten-
sions to the aforementioned classification algorithms have also been
proposed. Besides these, Support Vector Machine (SVM) [11] and
deep learning [12,13] are also very popular in face recognition. For
example, when deep learning was applied to face recognition, one
algorithm is called DeepFace [12], which can achieve very impress-
ive results in the Labeled Faces in the Wild (LFW) dataset.

Among all the algorithms for face recognition, appearance-based
subspace learning schemes attract considerable interest due to its
simplicity and desirable performance. Because the dimensionality of
face images is usually very high, dimensionality reduction, which is
also called feature extraction, is a key issue for face recognition, and
has received tremendous attention in the past 20 years.

Many applications in computer vision and pattern recognition
fields, such as face recognition, content-based image retrieval,
bioinformatics etc., often confront high-dimensional and nonlinear
samples. Nevertheless, dimensionality reduction gives an effective
way to avoid the curse of dimensionality [14]. A lot of algorithms
have been proposed in the past decades, and the two widely-used
classic techniques are Principal Component Analysis (PCA) [15] and
Linear Discriminant Analysis (LDA) [16,17], which are both matrix-
decomposition based approaches [18] and assume that the dis-
tribution of samples is globally linear. However, in many applications
such as face images where high-dimensional data are considered,
distribution of samples is often nonlinear. One way to handle this
problem is to use the kernel trick where the data from the original
space is mapped to a higher-dimensional space. In the kernel space
data is assumed to be linearly separable. Kernel Principal Component
Analysis (KPCA) [19] and Kernel Linear Discriminant Analysis (KLDA)
[20] are two representatives and can find their effectiveness in pat-
tern recognition. However, how to choose the appropriate kernel is
not an easy task, as it often influences the success of the algorithms.
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Another category is manifold learning algorithms (for instance,
ISOMAP [21], Locally Linear Embedding (LLE) [22], Laplacian
Embedding (LE) [23], Local Tangent Space Alignment (LTSA) [24],
Parallel vector Field Embedding (PFE) [25], Geodesic Distance
Function Learning (GDL) [26], and Parallel Field Alignment for
cross media Retrieval (PFAR) [27]), which have been proposed to
discover the intrinsic low-dimensional presentations for high-
dimensional and nonlinear data. However, these kinds of algo-
rithms cannot map a new sample to the corresponding low-
dimensional space, which is also called the Out-Of-Sample
extension problem [28]. Thus numerous methods have been pro-
posed to solve this problem, which can achieve an explicit map-
ping, like Locality Preserving Projection (LPP) [29,30], Neighbor-
hood Preserving Embedding (NPE) [31], Unsupervised Dis-
criminant Projection (UDP) [32], Marginal Fisher Analysis (MFA)
[33], Linear Discriminant Embedding (LDE) [34], Orthogonal LPP
[35], locality preserving discriminant projections (LPDP) [36],
Discriminative multi-manifold analysis [37] and Iterative Subspace
Analysis based on Feature Line Distance [38]. These algorithms
considered the manifold structure or the discriminant information
in one way or another, and showed to be more efficient than the
traditional methods in some special scenarios. For example, in [37]
the inter-manifold and intra-manifold graphs were defined
according to the label information and then the optimal projection
was searched, which yielded impressive results for a special case
where only one sample was available for each person.

All these methods can be unified in the graph embedding fra-
mework [39,40]. In this framework the first step is to construct the
graphs, that is, the intrinsic and penalty graphs. However, the
performance of the algorithms is heavily dependent on how to
construct the graphs. Traditional schemes employ k nearest
neighbor or the ε-ball method, but how to choose the appropriate
neighborhood size or the ball radius remains unclear. Moreover,
for these two methods, the graph construction and the weight
assignment are independent. One ideal model is that there is no
parameter, and the graph construction and the weight assignment
can be finished in one step [41].

Sparse representation [6,42] has received considerable interest
in the last few years. The main idea in it is that the given test
sample can be represented as a linear combination of the training
samples, and the classification is achieved by evaluating which
class leads to the minimum reconstructive deviation. The coeffi-
cients obtained by sparse representation can reflect the con-
tributions of the samples to reconstruct the given test sample. It is
reported in [43] that the bigger coefficients were the more likely
these samples belonged to the same class. Hence, the recon-
struction coefficients can be considered as a measurement of
similarity.

Motivated by this idea, some researchers attempted to con-
struct the adjacent graphs in a nonparametric way in which the
graph construction and weight assignment can be finished in one
step, and this technique has been applied to a wide range of
applications due to the fact that it was parameter-free and robust
to noises.

Yan et al. [44,45] proposed l1 graph for image analysis, and
constructed the graphs by sparse representation. In [46] a graph
regularized sparse coding method was proposed, which combined
local manifold structure into sparse representation. However, it
was unsupervised and the performance was limited to some
extent. Similar to l1 graph, Qiao et al. [47] proposed Sparsity Pre-
serving Projection (SPP), in which every sample was presented as a
linear combination of the remaining samples. SPP tried to find a
projection which can preserve the sparse reconstructive relation-
ship. There was no need to choose the parameter of neighborhood
size, and the authors pointed out that it had natural discriminative
power and was robust to noises to some extent. However, SPP took

the whole training set as the dictionary, and it was an unsu-
pervised method. Zhang et al. [48] introduced a graph optimiza-
tion for dimensionality reduction with sparsity constraints
(GODRSC) which attempted to learn the sparse representation
coefficients and the embedding simultaneously. In [49] Sparse
Representation Classifier Steered Discriminant Projection (SRCS-
DP) was proposed, which tried to find a projection by maximizing
the inter-class reconstruction error while minimizing the intra-
class reconstruction error. Therefore it had more discriminative
power, but it neglected the manifold structure and was time-
consuming due to the fact that the projection matrix and sparse
presentation coefficients were obtained iteratively. Chen and Jin
[50] proposed a new feature extraction method called Recon-
structive Discriminant Analysis (RDA) from the viewpoint of linear
regression classification. Gui et al. [51] designed a new scheme
called Discriminant Sparse Neighborhood Preserving Embedding
(DSNPE), which represented the data as a linear combination of
samples from the same class and preserved the sparse recon-
structive relationship in the same class. However, it ignored the
inherent manifold structure of training samples, especially the
inter-class manifold structure, as it only integrated SPP and max-
imum margin criterion (MMC) [52]. Similar works can also be
found in [53,54]

To exploit the merits of manifold learning and robustness of
sparse representation, this paper presents a new algorithm called
Graph Regularized Sparsity Discriminant Analysis (GRSDA), which
utilizes sparse representation as a way to graph construction and
weight assignment. In GRSDA, the intrinsic and penalty graphs are
constructed via sparse representation and the weights are
obtained subsequently, so it avoids the difficulty of determining
the neighborhood size. On the one hand, it inherits the property of
preserving the manifold structure like LPP; on the other hand, it
derives from LDA which has good discriminative power. Under the
graph embedding framework, GRSDA seeks a subspace, where
samples from the same class are as compact as possible, while
samples from different classes are as separable as possible.

The rest of this paper is organized as follows: Section 2 pre-
sents an overview of the related works like sparse representation,
sparsity preserving projection and graph embedding. Graph Reg-
ularized Sparsity Discriminant Analysis is proposed in Section 3.
Experiment results for the proposed algorithm and the related
algorithms are shown in Section 4. Section 5 gives the conclusion.

2. The related work

Suppose that we have a training set X X X, , ... ,1 2= {
X x x x, , ... ,C N1 2} = { } of n samples, where x R i N1, 2, ... ,i

D∈ ( = )
and D is the dimensionality. There are C classes, and there are
N k C1, 2, ... ,k ( = ) samples in the kth class. The aim of dimen-
sionality reduction is to seek a projection A, so that every sample
in the original space can be mapped to a low-dimensional space
by y A x Ri

T
i

d= ∈ , where d D≪ .

2.1. Sparse representation

If a given test sample y belongs to the ith class, sparse repre-
sentation assumes that y can be represented as a linear combi-
nation of the training samples in the ith class X x x x, , ,i i i i

N1 2 i= { ⋯ }.
In other words, we can present y as follows:

y w x w x w x X W 1i i i i i
N

i
N

i i
1 1 2 2 i i= + + ⋯ + = ( )

where Wi denotes the representation coefficient of y over Xi.
Ideally, the representation coefficients of other classes are zero,
that is, W j i0,j = ∀ ≠ . Thus y can be represented as a linear
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